New Ways of Obtaining Nanocomposites Based on Multi-Wall Carbon Nanotubes and Aluminum Alloy by High Pressure Casting

被引:0
|
作者
Spada, V. [1 ]
Stanic, D. [2 ]
Holjevac Grguric, T. [3 ]
Brnardic, I. [4 ]
机构
[1] Istrian Univ Appl Sci, METRIS Mat Res Ctr, Pula, Croatia
[2] PPC Buzet Doo, CIMOS, Buzet, Croatia
[3] Catholic Univ Croatia, Zagreb, Croatia
[4] Univ Zagreb, Fac Met, Sisak, Croatia
关键词
metal-matrix composites; high-pressure die casting; cast aluminum alloys; mechanical properties; nanocomposite; METAL-MATRIX COMPOSITES;
D O I
10.1007/s11015-023-01422-6
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
This study is performed to find ways for expanding use in industry of nanocomposites based on a light metal matrix and multiwall carbon nanotubes. Industrial tests are conducted using a high-pressure die casting process. Specimens are prepared in two ways using aluminum alloy AlSi9Cu3(Fe) with maximum specific magnesium content of 0.55 wt.%: by adding 0.2 wt.% of nanotubes directly to molten AlSi9Cu3(Fe) for the high-pressure die casting process, and by adding 0.05, 0.1 and 0.2 wt.% of nanotubes to the press ahead of the high-pressure die casting process piston. Chemical composition is determined and the effect of magnesium on improved interphase bonding leading to homogeneous distribution of multiwall carbon nanotubes is confirmed. Addition of 0.05 wt.% nanotubes results in a finer specimen microstructure, resulting in improved mechanical properties. Based on research, recommendations are proposed for the industrial scaling up and use of nanocomposites, particularly in automobile components.
引用
收藏
页码:1092 / 1104
页数:13
相关论文
共 50 条
  • [21] Freestanding bucky paper with high strength from multi-wall carbon nanotubes
    Li, Zhonglai
    Xu, Ju
    O'Byrne, Justin P.
    Chen, Lan
    Wang, Kaixue
    Morris, Michael A.
    Holmes, Justin D.
    MATERIALS CHEMISTRY AND PHYSICS, 2012, 135 (2-3) : 921 - 927
  • [22] Glucose biosensor based on multi-wall carbon nanotubes and screen printed carbon electrodes
    Guan, WJ
    Li, Y
    Chen, YQ
    Zhang, XB
    Hu, GQ
    BIOSENSORS & BIOELECTRONICS, 2005, 21 (03): : 508 - 512
  • [23] Characteristics of pitch-based carbon fibers containing multi-wall carbon nanotubes
    Kim, Ju-Wan
    Im, Ji-Sun
    Cho, Taehyun
    Basova, Yulia V.
    Edie, Dan D.
    Lee, Young-Seak
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2007, 13 (05) : 757 - 763
  • [24] HIGH PIEZORESISTIVE BEHAVIOR OF VERTICALLY ALIGNED MULTI-WALL CARBON NANOTUBES ARRAY
    Mansouri, Vahid
    Yadegari, Amir
    Rashidi, A.
    Choolaei, Mohammadmehdi
    Omidi, Meisam
    IIOAB JOURNAL, 2016, 7 (10) : 38 - 42
  • [25] Acidified multi-wall carbon nanotubes/polyaniline composites with high negative permittivity
    Yao, Xiuchao
    Kou, Xuechen
    Qiu, Jun
    ORGANIC ELECTRONICS, 2016, 38 : 55 - 60
  • [26] Molecular dynamics simulation of the evaporation of the surface wall of multi-wall carbon nanotubes at high temperature
    Wang Wei
    Zhang Kai-Wang
    Meng Li-Jun
    Li Zhong-Qiu
    Zuo Xue-Yun
    Zhong Jian-Xin
    ACTA PHYSICA SINICA, 2010, 59 (04) : 2672 - 2678
  • [27] Effect of Multi-Wall Carbon Nanotubes Supported Nickel on Hydrogen Storage Properties of Mg-Based Alloy
    Yang Yang
    Zhu Yunfeng
    Wei Lingjun
    Huan Qingqing
    Li Liquan
    RARE METAL MATERIALS AND ENGINEERING, 2013, 42 (07) : 1459 - 1463
  • [29] Thermal conductivity in multi-wall carbon nanotube/silica-based nanocomposites
    Sivakumar, Ramasamy
    Guo, Shuqi
    Nishimura, Toshiyuki
    Kagawa, Yutaka
    SCRIPTA MATERIALIA, 2007, 56 (04) : 265 - 268
  • [30] Technology for Producing Aluminum-Matrix Composite Material Reinforced with Multi-Wall Carbon Nanotubes
    A. D. Romanov
    E. A. Romanova
    I. V. Vilkov
    A. M. Ob’edkov
    N. M. Semenov
    B. S. Kaverin
    R. S. Kovylin
    Metallurgist, 2022, 66 : 681 - 687