Cycle mapping with adversarial event classification network for fake news detection

被引:0
|
作者
Wu, Fei [1 ]
Zhou, Hong [1 ]
Feng, Yujian [1 ]
Gao, Guangwei [1 ]
Ji, Yimu [2 ]
Jing, Xiao-Yuan [3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Automat & Artificial Intelligence, Nanjing 210023, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Sch Comp Sci, Nanjing 210023, Peoples R China
[3] Wuhan Univ, Sch Comp, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Modality differences; Event differences; Cycle mapping; Adversarial event classification; Fake news detection;
D O I
10.1007/s11042-024-18499-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, there is a increase in researchers' interest on social evidence, particularly for fake news detection (FND). However, news posts on social media often include diverse modalities, e.g., text, image, etc., and diverse events related to politics, economics, etc., resulting in significant modality and event differences. How to jointly learn modal-invariant and event-invariant discriminative features effectively of news posts remains a challenge. This paper proposes a novel FND approach, called Cycle Mapping and Adversarial Event Classification Network (CMAECN). It consists of two parts: a multi-modal cycle feature mapping module (CMM) and an adversarial event classification module (AECM). In order to fully reduce modality difference, the CMM module is designed, which performs cross-modal generation between image and text modalities by using the generative model, conducts feature source identification between initial and generated features for each modality with the discriminative model, and reconstructs text or image features with the cross-modal fused features to avoid information loss with the reconstructor. In order to fully reduce event difference, the AECM module is designed to perform event adversarial classification between the event classification task and the event-independent classification task with a multi-task event classifier, where each dimension of the classifier output corresponds to a certain event category, and an additional dimension of the output represents the event-independent category. The network training of CMAECN is conducted by adopting an adversarial scheme. Comprehensive experiments are conducted on two public datasets, and CMAECN shows superior performance compared to the state-of-the-art multi-modal FND methods.
引用
收藏
页码:74101 / 74122
页数:22
相关论文
共 50 条
  • [21] A Discriminative Graph Neural Network for Fake News Detection
    Cao, Honghao
    Deng, Junhao
    Dong, Guoxuan
    Yuan, Dewei
    2021 2ND INTERNATIONAL CONFERENCE ON BIG DATA & ARTIFICIAL INTELLIGENCE & SOFTWARE ENGINEERING (ICBASE 2021), 2021, : 224 - 228
  • [22] A Multifaceted Reasoning Network for Explainable Fake News Detection
    Han, Linfeng
    Zhang, Xiaoming
    Zhou, Ziyi
    Liu, Yun
    INFORMATION PROCESSING & MANAGEMENT, 2024, 61 (06)
  • [23] OPCNN-FAKE: Optimized Convolutional Neural Network for Fake News Detection
    Saleh, Hager
    Alharbi, Abdullah
    Alsamhi, Saeed Hamood
    IEEE ACCESS, 2021, 9 (09): : 129471 - 129489
  • [24] Transferemble: a classification method for the detection of fake satellite images created with deep convolutional generative adversarial network
    Surucu, Selim
    Diri, Banu
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (04)
  • [25] Using Topic Modeling and Adversarial Neural Networks for Fake News Video Detection
    Choi, Hyewon
    Ko, Youngjoong
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 2950 - 2954
  • [26] Word embedding and classification methods and their effects on fake news detection
    Hauschild, Jessica
    Eskridge, Kent
    MACHINE LEARNING WITH APPLICATIONS, 2024, 17
  • [27] Knowledge augmented transformer for adversarial multidomain multiclassification multimodal fake news detection
    Song, Chenguang
    Ning, Nianwen
    Zhang, Yunlei
    Wu, Bin
    NEUROCOMPUTING, 2021, 462 : 88 - 100
  • [28] Enhancing Fake News Detection by Multi-Feature Classification
    Almarashy, Ahmed Hashim Jawad
    Feizi-Derakhshi, Mohammad-Reza
    Salehpour, Pedram
    IEEE ACCESS, 2023, 11 : 139601 - 139613
  • [29] AI and Fake News: A Conceptual Framework for Fake News Detection
    Ameli, Leila
    Chowdhury, Md Shah Alam
    Farid, Farnaz
    Bello, Abubakar
    Sabrina, Fariza
    Maurushat, Alana
    PROCEEDINGS OF THE 2022 INTERNATIONAL CONFERENCE ON CYBER SECURITY, CSW 2022, 2022, : 34 - 39
  • [30] Convolutional neural network with margin loss for fake news detection
    Goldani, Mohammad Hadi
    Safabakhsh, Reza
    Momtazi, Saeedeh
    INFORMATION PROCESSING & MANAGEMENT, 2021, 58 (01)