Function-Aware Resource Management Framework for Serverless Edge Computing

被引:9
|
作者
Ko, Haneul [1 ]
Pack, Sangheon [2 ]
机构
[1] Kyung Hee Univ, Dept Elect Engn, Yongin 17104, Gyeonggi, South Korea
[2] Korea Univ, Sch Elect Engn, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
Function-aware resource management (FARM); joint optimization; serverless edge computing; warm start;
D O I
10.1109/JIOT.2022.3205166
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Serverless edge computing is an emerging concept where only required functions are defined and executed as container instances at the edge cloud. The edge cloud has finite resources; therefore, sophisticated resource management is indispensable to accommodate more requests. In this article, we propose a function-aware resource management (FARM) framework for serverless edge computing that defines per-function queues to maximally utilize edge cloud resources. The FARM framework optimally determines: 1) which container instances should be maintained as warm status and 2) the amount of computing resources assigned to them. The FARM framework specifically formulates a constrained Markov decision process problem to minimize the memory resource consumption for the warm status maintenance while guaranteeing on-time task completion and converts it to a linear programming model to derive the optimal solution. The evaluation results show that the FARM framework can reduce the memory resource consumption of the edge cloud while meeting the on-time task completion.
引用
收藏
页码:1310 / 1319
页数:10
相关论文
共 50 条
  • [21] A Survey of Architecture, Framework and Algorithms for Resource Management in Edge Computing
    Premkumar S.
    Sigappi A.N.
    [J]. EAI Endorsed Transactions on Energy Web, 2021, 8 (33) : 1 - 24
  • [22] An Edge Computing Based Smart Healthcare Framework for Resource Management
    Oueida, Soraia
    Kotb, Yehia
    Aloqaily, Moayad
    Jararweh, Yaser
    Baker, Thar
    [J]. SENSORS, 2018, 18 (12)
  • [23] Dynamic Split Computing Framework in Distributed Serverless Edge Clouds
    Ko, Haneul
    Jeong, Hyeonjae
    Jung, Daeyoung
    Pack, Sangheon
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (08): : 14523 - 14531
  • [24] Serverless Management of Sensing Systems for Fog Computing Framework
    Sarkar, Suvajit
    Wankar, Rajeev
    Srirama, Satish Narayana
    Suryadevara, Nagender Kumar
    [J]. IEEE SENSORS JOURNAL, 2020, 20 (03) : 1564 - 1572
  • [25] Application of Proximal Policy Optimization for Resource Orchestration in Serverless Edge Computing
    Femminella, Mauro
    Reali, Gianluca
    [J]. COMPUTERS, 2024, 13 (09)
  • [26] Towards Optimal Serverless Function Scaling in Edge Computing Network
    Bensalem, Mounir
    Carpio, Francisco
    Jukan, Admela
    [J]. ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 828 - 833
  • [27] Advanced Serverless Edge Computing
    Ticongolo, Inacio Gaspar
    Baresi, Luciano
    Quattrocchi, Giovanni
    [J]. SERVICE-ORIENTED COMPUTING - ICSOC 2023 WORKSHOPS, 2024, 14518 : 285 - 291
  • [28] Function Offloading and Data Migration for Stateful Serverless Edge Computing
    Nardelli, Matteo
    Russo, Gabriele Russo
    [J]. PROCEEDINGS OF THE 15TH ACM/SPEC INTERNATIONAL CONFERENCE ON PERFORMANCE ENGINEERING, ICPE 2024, 2024, : 247 - 257
  • [29] S-Cache: Function Caching for Serverless Edge Computing
    Chen, Chen
    Nagel, Lars
    Cui, Lin
    Tso, Fung Po
    [J]. PROCEEDINGS OF THE 6TH INTERNATIONAL WORKSHOP ON EDGE SYSTEMS, ANALYTICS AND NETWORKING, EDGESYS 2023, 2023, : 1 - 6
  • [30] Resource Management Framework Based on the Stackelberg Game in Vehicular Edge Computing
    Li, Guang-Shun
    Zhang, Ying
    Wang, Mao-Li
    Wu, Jun-Hua
    Lin, Qing-Yan
    Sheng, Xiao-Fei
    [J]. COMPLEXITY, 2020, 2020 (2020)