Function-Aware Resource Management Framework for Serverless Edge Computing

被引:9
|
作者
Ko, Haneul [1 ]
Pack, Sangheon [2 ]
机构
[1] Kyung Hee Univ, Dept Elect Engn, Yongin 17104, Gyeonggi, South Korea
[2] Korea Univ, Sch Elect Engn, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
Function-aware resource management (FARM); joint optimization; serverless edge computing; warm start;
D O I
10.1109/JIOT.2022.3205166
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Serverless edge computing is an emerging concept where only required functions are defined and executed as container instances at the edge cloud. The edge cloud has finite resources; therefore, sophisticated resource management is indispensable to accommodate more requests. In this article, we propose a function-aware resource management (FARM) framework for serverless edge computing that defines per-function queues to maximally utilize edge cloud resources. The FARM framework optimally determines: 1) which container instances should be maintained as warm status and 2) the amount of computing resources assigned to them. The FARM framework specifically formulates a constrained Markov decision process problem to minimize the memory resource consumption for the warm status maintenance while guaranteeing on-time task completion and converts it to a linear programming model to derive the optimal solution. The evaluation results show that the FARM framework can reduce the memory resource consumption of the edge cloud while meeting the on-time task completion.
引用
收藏
页码:1310 / 1319
页数:10
相关论文
共 50 条
  • [1] Energy-Aware Resource Scheduling for Serverless Edge Computing
    Aslanpour, Mohammad Sadegh
    Toosi, Adel N.
    Cheema, Muhammad Aamir
    Gaire, Raj
    [J]. 2022 22ND IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND INTERNET COMPUTING (CCGRID 2022), 2022, : 190 - 199
  • [2] Deadline-aware Dynamic Resource Management in Serverless Computing Environments
    Mampage, Anupama
    Karunasekera, Shanika
    Buyya, Rajkumar
    [J]. 21ST IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND INTERNET COMPUTING (CCGRID 2021), 2021, : 483 - 492
  • [3] Joint Resource Management and Pricing for Task Offloading in Serverless Edge Computing
    Tutuncuoglu, Feridun
    Dan, Gyorgy
    [J]. IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (06) : 7438 - 7452
  • [4] Faashouse: Sustainable Serverless Edge Computing Through Energy-Aware Resource Scheduling
    Aslanpour, Mohammad Sadegh
    Toosi, Adel N.
    Cheema, Muhammad Aamir
    Chhetri, Mohan Baruwal
    [J]. IEEE TRANSACTIONS ON SERVICES COMPUTING, 2024, 17 (04) : 1533 - 1547
  • [5] VECMAN: A Framework for Energy-Aware Resource Management in Vehicular Edge Computing Systems
    Bahreini, Tayebeh
    Brocanelli, Marco
    Grosu, Daniel
    [J]. IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (02) : 1231 - 1245
  • [6] IoT Resource-aware Orchestration Framework for Edge Computing
    Agrawal, Niket
    Rellermeyer, Jan
    Ding, Aaron Yi
    [J]. CONEXT'19 COMPANION: PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON EMERGING NETWORKING EXPERIMENTS AND TECHNOLOGIES, 2019, : 62 - 64
  • [7] GOLGI: Performance-Aware, Resource-Efficient Function Scheduling for Serverless Computing
    Li, Suyi
    Wang, Wei
    Yang, Jun
    Chen, Guangzhen
    Lu, Daohe
    [J]. PROCEEDINGS OF THE 2023 ACM SYMPOSIUM ON CLOUD COMPUTING, SOCC 2023, 2023, : 32 - 47
  • [8] KneeScale: Efficient Resource Scaling for Serverless Computing at the Edge
    Li, Xue
    Kang, Peng
    Molone, Jordan
    Wang, Wei
    Lama, Palden
    [J]. 2022 22ND IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND INTERNET COMPUTING (CCGRID 2022), 2022, : 180 - 189
  • [9] Mobile-aware dynamic resource management for edge computing
    Filiposka, Sonja
    Mishev, Anastas
    Gilly, Katja
    [J]. TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2019, 30 (06):
  • [10] Profit-aware Resource Management for Edge Computing Systems
    Anglano, Cosimo
    Canonico, Massimo
    Guazzone, Marco
    [J]. EDGESYS'18: PROCEEDINGS OF THE FIRST ACM INTERNATIONAL WORKSHOP ON EDGE SYSTEMS, ANALYTICS AND NETWORKING, 2018, : 25 - 30