Numerical investigation on aerodynamic performance of a bionic flapping wing

被引:1
|
作者
Xinghua CHANG [1 ]
Laiping ZHANG [1 ]
Rong MA [2 ]
Nianhua WANG [2 ]
机构
[1] State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center
[2] Computational Aerodynamics Institute, China Aerodynamics Research and Development Center
基金
中国国家自然科学基金;
关键词
flapping wing; bird-like flapping; unsteady flow; radial basis function(RBF); hybrid dynamic mesh; span-wise twisting mechanism;
D O I
暂无
中图分类号
V211 [空气动力学];
学科分类号
0801 ; 080103 ; 080104 ;
摘要
This paper numerically studies the aerodynamic performance of a bird-like bionic flapping wing. The geometry and kinematics are designed based on a seagull wing,in which flapping, folding, swaying, and twisting are considered. An in-house unsteady flow solver based on hybrid moving grids is adopted for unsteady flow simulations. We focus on two main issues in this study, i.e., the influence of the proportion of down-stroke and the effect of span-wise twisting. Numerical results show that the proportion of downstroke is closely related to the efficiency of the flapping process. The preferable proportion is about 0.7 by using the present geometry and kinematic model, which is very close to the observed data. Another finding is that the drag and the power consumption can be greatly reduced by the proper span-wise twisting. Two cases with different reduced frequencies are simulated and compared with each other. The numerical results show that the power consumption reduces by more than 20%, and the drag coefficient reduces by more than 60% through a proper twisting motion for both cases. The flow mechanism is mainly due to controlling of unsteady flow separation by adjusting the local effective angle of attack. These conclusions will be helpful for the high-performance micro air vehicle(MAV) design.
引用
收藏
页码:1625 / 1646
页数:22
相关论文
共 50 条
  • [21] Experimental Investigation of Effects of Flapping Wing Aspect Ratio and Flexibility on Aerodynamic Performance
    Zhang, Chengkun
    Khan, Zaeem A.
    Agrawal, Sunil K.
    2010 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2010, : 626 - 631
  • [22] Unsteady Aerodynamic Design of a Flapping Wing Combined with a Bionic Wavy Leading Edge
    Bai, Xuan
    Zhan, Hao
    Mi, Baigang
    APPLIED SCIENCES-BASEL, 2023, 13 (03):
  • [23] Design and Aerodynamic Characteristics of the "0"-shaped Trajectory Mechanism of Bionic Flapping Wing
    Hao Y.
    Li L.
    Xu J.
    Liu F.
    Liu S.
    Jiqiren/Robot, 2020, 42 (02): : 179 - 190
  • [24] Effects of Wing plane Shape of Flexible Flapping Wing on the Aerodynamic Performance
    Kwon, Hyun Ki
    Chang, Jo Won
    JOURNAL OF THE KOREAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, 2024, 52 (10) : 767 - 773
  • [25] Effect of Wing Membrane Material on the Aerodynamic Performance of Flexible Flapping Wing
    Lang, Xinyu
    Song, Bifeng
    Yang, Wenqing
    Yang, Xiaojun
    APPLIED SCIENCES-BASEL, 2022, 12 (09):
  • [26] Effect of chord flexure on aerodynamic performance of a flapping wing
    Tuyen Quang Le
    Jin Hwan Ko
    Doyoung Byun
    Soo Hyung Park
    Hoon Choel Park
    Journal of Bionic Engineering, 2010, 7 : 87 - 94
  • [27] Wing flexibility effect on aerodynamic performance of different flapping wing planforms
    Addo-Akoto, Reynolds
    Yang, Hyeon-Ho
    Han, Jong-Seob
    Han, Jae-Hung
    JOURNAL OF FLUIDS AND STRUCTURES, 2023, 123
  • [28] Effect of Chord Flexure on Aerodynamic Performance of a Flapping Wing
    Le, Tuyen Quang
    Ko, Jin Hwan
    Byun, Doyoung
    Park, Soo Hyung
    Park, Hoon Choel
    JOURNAL OF BIONIC ENGINEERING, 2010, 7 (01) : 87 - 94
  • [29] Effect of a Flapping Wing Geometry on Its Aerodynamic Performance
    Zhu, Jianyang
    Lei, Bin
    2016 International Conference on Robotics and Automation Engineering (ICRAE 2016), 2016, : 44 - 47
  • [30] Aerodynamic performance of flapping flexible wing in insect flight
    Nakata, Toshiyuki
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY, 2009, 153A (02): : S50 - S52