Backbone Coloring for Triangle-free Planar Graphs

被引:1
|
作者
Yue-hua BU [1 ]
Shui-ming ZHANG [1 ]
机构
[1] Xingzhi College, Zhejiang Normal University
基金
中国国家自然科学基金;
关键词
backbone coloring; spanning tree; girth; maximum average degree;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
Let G be a graph and H a subgraph of G. A backbone-k-coloring of(G, H) is a mapping f :V(G) → {1, 2, ···, k} such that |f(u)-f(v)| ≥ 2 if uv ∈ E(H) and |f(u)-f(v)| ≥ 1 if uv ∈ E(G)\E(H).The backbone chromatic number of(G, H) denoted by χb(G, H) is the smallest integer k such that(G, H) has a backbone-k-coloring. In this paper, we prove that if G is either a connected triangle-free planar graph or a connected graph with mad(G) < 3, then there exists a spanning tree T of G such that χb(G, T) ≤ 4.
引用
收藏
页码:819 / 824
页数:6
相关论文
共 50 条
  • [21] Distributed coloring algorithms for triangle-free graphs
    Pettie, Seth
    Su, Hsin-Hao
    [J]. INFORMATION AND COMPUTATION, 2015, 243 : 263 - 280
  • [22] Distributed coloring algorithms for triangle-free graphs
    University of Michigan, Ann Arbor
    MI
    48105, United States
    [J]. Inf Comput, (263-280):
  • [23] Coloring and Domination of Vertices in Triangle-free Graphs
    Dutton, Ronald
    [J]. Journal of Combinatorial Mathematics and Combinatorial Computing, 2019, 111 : 137 - 143
  • [24] Flexibility of triangle-free planar graphs
    Dvorak, Zdenek
    Masarik, Tomas
    Musilek, Jan
    Pangrac, Ondrej
    [J]. JOURNAL OF GRAPH THEORY, 2021, 96 (04) : 619 - 641
  • [25] Coloring of triangle-free graphs on the double torus
    Kral, Daniel
    Stehlik, Matej
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (02) : 541 - 553
  • [26] Three-coloring triangle-free graphs on surfaces V. Coloring planar graphs with distant anomalies
    Dvorak, Zdenek
    Kral, Daniel
    Thomas, Robin
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2021, 150 : 244 - 269
  • [27] 3-Coloring Triangle-Free Planar Graphs with a Precolored 9-Cycle
    Choi, Ilkyoo
    Ekstein, Jan
    Holub, Premysl
    Lidicky, Bernard
    [J]. COMBINATORIAL ALGORITHMS, IWOCA 2014, 2015, 8986 : 98 - 109
  • [28] Fast distributed coloring algorithms for triangle-free graphs
    [J]. Springer Verlag (7966 LNCS):
  • [29] Triangle-free planar graphs as segments intersection graphs
    de Castro, N
    Cobos, FJ
    Dana, JC
    Márquez, A
    Noy, M
    [J]. GRAPH DRAWING, 1999, 1731 : 341 - 350
  • [30] Fast Distributed Coloring Algorithms for Triangle-Free Graphs
    Pettie, Seth
    Su, Hsin-Hao
    [J]. AUTOMATA, LANGUAGES, AND PROGRAMMING, PT II, 2013, 7966 : 681 - 693