New Type of Basic Functions of FEM in Application to Solution of Inverse Heat Conduction Problem

被引:0
|
作者
MichaelJ.CIALKOWSKI
机构
关键词
non-stationary heat conduction problem; Treffetz method; FEM new basic function;
D O I
暂无
中图分类号
TK124 [传热学];
学科分类号
摘要
The work presents the application of heat polynomials for solving an inverse problem. The heat polynomials form the Treffetz Method for non-stationary heat conduction problem. They have been used as base functions in Finite Element Method. Application of heat polynomials permits to reduce the order of numerical integration as compared to the classical Finite Element Method with formulation of the matrix of system of equations.
引用
收藏
页码:163 / 171
页数:9
相关论文
共 50 条
  • [41] Solution of the Inverse Heat Conduction Problem by Using the ABC Algorithm
    Hetmaniok, Edyta
    Slota, Damian
    Zielonka, Adam
    ROUGH SETS AND CURRENT TRENDS IN COMPUTING, PROCEEDINGS, 2010, 6086 : 659 - 668
  • [42] SOLUTION OF THE INVERSE PROBLEM OF HEAT CONDUCTION USING NEURAL NETWORKS
    Molchanov, A. M.
    Yanyshev, D. S.
    Ezhov, A. D.
    Bykov, L. V.
    HEAT TRANSFER RESEARCH, 2025, 56 (07) : 1 - 12
  • [43] Solution of the Retrospective Inverse Heat Conduction Problem with Parametric Optimization
    A. N. Diligenskaya
    High Temperature, 2018, 56 : 382 - 388
  • [44] Energetic approach to direct and inverse heat conduction problems with Trefftz functions used in FEM
    Grysa, K.
    Lesniewska, R.
    Maciag, A.
    PROCEEDINGS OF LSAME.08: LEUVEN SYMPOSIUM ON APPLIED MECHANICS IN ENGINEERING, PTS 1 AND 2, 2008, : 173 - 185
  • [45] Application of Meshless Methods for Solving an Inverse Heat Conduction Problem
    Rostamian, Malihe
    Shahrezaee, Alimardan
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2016, 9 (01): : 64 - 83
  • [46] Application of grey prediction to inverse nonlinear heat conduction problem
    Chiang, Jaw-Yeong
    Chen, Cha'o-Kuang
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2008, 51 (3-4) : 576 - 585
  • [47] Optimization method for an evolutional type inverse heat conduction problem
    Deng, Zui-Cha
    Yu, Jian-Ning
    Yang, Liu
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (03)
  • [48] Boundary functions determination in an inverse time fractional heat conduction problem
    S. Toubaei
    M. Garshasbi
    P. Reihani
    Computational and Applied Mathematics, 2019, 38
  • [49] Boundary functions determination in an inverse time fractional heat conduction problem
    Toubaei, S.
    Garshasbi, M.
    Reihani, P.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (04):
  • [50] Solution of an inverse transient heat conduction problem in a part of a complex domain
    Duda, Piotr
    Konieczny, Mariusz
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 127 : 821 - 832