H-Magic and H-Supermagic of Graphs

被引:0
|
作者
MIAO Wenjing [1 ]
WANG Tao [1 ]
SUI Lili [1 ]
机构
[1] Department of Foundation, North China Institute of Science and Technology
基金
中国国家自然科学基金; 中央高校基本科研业务费专项资金资助;
关键词
H-covering; H-decomposition; H-magic; magic H-covering; magic H-decomposition;
D O I
10.19823/j.cnki.1007-1202.2020.0019
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
An H-covering(resp.decomposition) of a graph G is a set of subgraphs of G,{H;,H;,…,H;} such that H;is isomorphic to H for eachi,and each edge of G belongs to at least(resp.exactly) one of the subgraphs H;,fox 1≤i≤k.An H-covering(resp.decomposition) of a graph G is a magic H-covering(resp.decomposition) if there is a bijection f:V(G)∪E(G)→{1,...,|V(G)|+|E(G)|} such that the sum of labels of edges and the vertices of each copy of H in the decomposition is a constant.If G admits a unique H-covering H and H is a magic H-covering of G,then G is H-magic.In this paper,we show that if G admits a magic H-covering(resp.decomposition),and satisfies some other conditions,then a union of k vertex joint graph G,kG,and a graph obtained from kG,Gk admit a magic H-covering or decomposition.
引用
收藏
页码:100 / 104
页数:5
相关论文
共 50 条
  • [41] Byzantine magic - Maguire,H
    Rosser, J
    SPECULUM-A JOURNAL OF MEDIEVAL STUDIES, 1997, 72 (03): : 857 - 859
  • [42] THE 'MAGIC INKSTAND' - SEIDEL,H
    GILLIES, E
    TLS-THE TIMES LITERARY SUPPLEMENT, 1982, (4156): : 1306 - 1306
  • [43] THE MAGIC MITT - KAY,H
    ZANKOWICH, P
    EDUCATION, 1959, 79 (08): : 518 - 518
  • [44] Byzantine magic - Maguire,H
    Constantelos, DJ
    CHURCH HISTORY, 1996, 65 (04): : 684 - 685
  • [45] H-product of graphs, H-threshold graphs and threshold-width of graphs
    Skums, Pavel
    DISCRETE MATHEMATICS, 2013, 313 (21) : 2390 - 2400
  • [46] MAGIC SYMBOLS - MAGIC AND POPULAR BELIEFS - GERMAN - NEMEC,H
    OPPELT, W
    ZEITSCHRIFT FUR VOLKSKUNDE, 1979, 75 (01): : 148 - 149
  • [47] H-minimal graphs of low regularity in H
    Pauls, SD
    COMMENTARII MATHEMATICI HELVETICI, 2006, 81 (02) : 337 - 381
  • [48] Magic and antimagic H-decompositions
    Inayah, N.
    Llado, A.
    Moragas, J.
    DISCRETE MATHEMATICS, 2012, 312 (07) : 1367 - 1371
  • [49] Magic Graphs
    Hajnal, Peter
    ACTA SCIENTIARUM MATHEMATICARUM, 2014, 80 (1-2): : 352 - 353
  • [50] MAGIC GRAPHS
    STEWART, BM
    CANADIAN JOURNAL OF MATHEMATICS, 1966, 18 (05): : 1031 - &