Numerical Investigation on a Dual-jet Consisting of a Plane Wall Jet and a Parallel Offset Jet at Low-Reynolds Number

被引:2
|
作者
Zhao Liqing [1 ]
Sun Jianhong [2 ]
机构
[1] School of Marine Sciences,Nanjing University of Information Science & Technology
[2] College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics
基金
中国国家自然科学基金;
关键词
dual-jet; low-Reynolds number; lattice Boltzmann method; vortex shedding;
D O I
10.16356/j.1005-1120.2018.05.778
中图分类号
O358 [射流];
学科分类号
080103 ; 080704 ;
摘要
A dual-jet consisting of a wall jet and an offset jet has been numerically simulated using lattice Boltzmann method to examine the effects of jet spacing between two jet centerlines,defined as s.The Reynolds number based on jet-exit-width dis set to be Re = 56 and the jet spacing is set to be less than or equal 10 times the jet-exitwidth.Computational results reveal that the flow field displays periodic vortex shedding when the jet spacing is in the range of 9≤s/d ≤ 10,while it remains steady with two counter-rotating vortices in the converging region when s/d ≤ 8.When s/d = 9,the power spectral analyses indicate that the vortex shedding phenomenon has specific frequency.The significant oscillation stresses induced by the periodic components of velocities are found to mainly exist in the inner shear layer regions,implying stronger momentum transfer occuring in these regions.
引用
收藏
页码:778 / 788
页数:11
相关论文
共 50 条
  • [11] Numerical investigation of the interaction of the turbulent dual-jet and acoustic propagation
    李一明
    李宝宽
    齐凤升
    王喜春
    [J]. Chinese Physics B, 2017, 26 (02) : 298 - 308
  • [12] Numerical Investigation of Flow Field of a Dual-jet Plasma Generator
    游晖
    严汶子
    吴承康
    [J]. Plasma Science and Technology, 2000, (01) : 141 - 149
  • [13] Investigation of the influence of the Reynolds number on a plane jet using direct numerical simulation
    Klein, M
    Sadiki, A
    Janicka, J
    [J]. INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2003, 24 (06) : 785 - 794
  • [14] The influence of Reynolds number on a plane jet
    Deo, Ravinesh C.
    Mi, Jianchun
    Nathan, Graham J.
    [J]. PHYSICS OF FLUIDS, 2008, 20 (07)
  • [15] Influence of a secondary, parallel, low Reynolds number, round jet on a turbulent axisymmetric jet
    Vouros, A.
    Panidis, Th.
    [J]. EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2008, 32 (08) : 1455 - 1467
  • [16] Numerical study of pulsed turbulent plane wall jet by low-Reynolds-number k-ε model
    Kechiche, Jamel
    Mhiri, Hatem
    Le Palec, Georges
    Bournot, Philippe
    [J]. NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2007, 52 (10) : 935 - 957
  • [17] Numerical simulation of dual-jet system in cross flow
    Kishore, Aravind
    Ghia, Urmila
    Ghia, K. N.
    [J]. FEDSM 2007: PROCEEDINGS OF THE 5TH JOINT AMSE/JSME FLUIDS ENGINEERING SUMMER CONFERENCE VOL 1, PTS A AND B, 2007, : 1233 - 1240
  • [18] Numerical investigation of effect of the design parameters of the counter-flow jet for drag reduction in hypersonic low-Reynolds number regime
    Yoon, H.
    Suzuki, K.
    [J]. PHYSICS OF FLUIDS, 2024, 36 (03)
  • [19] Experimental analysis of low-Reynolds number free jets: Evolution along the jet centerline and Reynolds number effects
    Todde V.
    Spazzini P.G.
    Sandberg M.
    [J]. Experiments in Fluids, 2009, 47 (02) : 279 - 294
  • [20] CFD modeling of the interaction between an oblique wall jet and a parallel offset jet
    Hnaien N.
    Marzouk S.
    Kolsi L.
    Gasmi H.
    Aissia H.B.
    Jay J.
    [J]. International Journal of Fluid Mechanics Research, 2019, 46 (02): : 101 - 112