A Modified Landweber Iteration for General Sideways Parabolic Equations

被引:0
|
作者
Jin-bo LIU 1
机构
基金
中国国家自然科学基金;
关键词
inverse heat conduction problem; sideways parabolic equation; Landweber iteration; discrepancy principle;
D O I
暂无
中图分类号
O175.26 [抛物型方程];
学科分类号
摘要
In this paper,we introduce a modified Landweber iteration to solve the sideways parabolic equation,which is an inverse heat conduction problem(IHCP) in the quarter plane and is severely ill-posed.We shall show that our method is of optimal order under both a priori and a posteriori stopping rule.Furthermore,if we use the discrepancy principle we can avoid the selection of the a priori bound.Numerical examples show that the computation effect is satisfactory.
引用
收藏
页码:727 / 738
页数:12
相关论文
共 50 条
  • [41] Convergence of projected Landweber iteration for matrix rank minimization
    Lin, Junhong
    Li, Song
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2014, 36 (02) : 316 - 325
  • [42] THE LANDWEBER ITERATION AND PROJECTION ONTO CONVEX-SETS
    TRUSSELL, HJ
    CIVANLAR, MR
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1985, 33 (06): : 1632 - 1634
  • [43] The Landweber iteration applied to inverse conductive scattering problems
    Hettlich, F
    INVERSE PROBLEMS, 1998, 14 (04) : 931 - 947
  • [44] Numerical solution to a sideways parabolic equation
    Hào, DN
    Reinhardt, HJ
    Schneider, A
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2001, 50 (05) : 1253 - 1267
  • [45] Preconditioned Landweber iteration algorithm for electrical capacitance tomography
    Lu, G
    Peng, LH
    Zhang, BF
    Liao, YB
    FLOW MEASUREMENT AND INSTRUMENTATION, 2005, 16 (2-3) : 163 - 167
  • [46] CONVERGENCE OF ONE ITERATION PROCESS FOR QUASI-LINEAR PARABOLIC EQUATIONS
    CHISTYAKOV, VM
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1984, (01): : 41 - 46
  • [47] Updating the Landweber Iteration Method for Solving Inverse Problems
    Al-Mahdawi, Hassan K. Ibrahim
    Alkattan, Hussein
    Abotaleb, Mostafa
    Kadi, Ammar
    El-kenawy, El-Sayed M.
    MATHEMATICS, 2022, 10 (15)
  • [48] A Data-Driven Iteratively Regularized Landweber Iteration
    Aspri, A.
    Banert, S.
    Oktem, O.
    Scherzer, O.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 41 (10) : 1190 - 1227
  • [49] A discrepancy principle for the Landweber iteration based on risk minimization
    Benvenuto, Federico
    Campi, Cristina
    APPLIED MATHEMATICS LETTERS, 2019, 96 : 1 - 6
  • [50] Modified variational iteration method for solving Helmholtz equations
    Noor M.A.
    Mohyud-Din S.T.
    Computational Mathematics and Modeling, 2009, 20 (1) : 40 - 50