Convergence Properties of Generalized Fourier Series on a Parallel Hexagon Domain

被引:1
|
作者
Wang Shu-yun1
机构
关键词
three-direction coordinate; kernel function; generalized Fourier series; uniform convergence;
D O I
10.13447/j.1674-5647.2009.02.002
中图分类号
O174.21 [正交级数(傅里叶级数)];
学科分类号
摘要
A new Rogosinski-type kernel function is constructed using kernel function of partial sums Sn(f;t) of generalized Fourier series on a parallel hexagon domain Ω associating with three-direction partition.We prove that an operator Wn(f;t) with the new kernel function converges uniformly to any continuous function f(t) ∈ C*(Ω)(the space of all continuous functions with period Ω) on Ω.Moreover,the convergence order of the operator is presented for the smooth approached function.
引用
收藏
页码:104 / 114
页数:11
相关论文
共 50 条