Applications of new affine invariant for polytopes

被引:0
|
作者
杨柳
何斌吾
机构
[1] P.R.China
[2] Shanghai 200444
[3] Department of Mathematics Shanghai University
基金
中国国家自然科学基金;
关键词
convex polytope; affine invariant; Minkowski problem; volume;
D O I
暂无
中图分类号
O175.29 [非线性偏微分方程];
学科分类号
070104 ;
摘要
To study the Schneider’s projection problem,Lutwak,Yang and Zhang recently introduced a new affine invariant functional U(P) for convex polytopes in R~n. In the paper,we obtain the analytic expression of the affine-invariant U(P) defined on a specific subclass of origin-symmetric convex polytopes in R~n and give an application of U(P) to the L-Minkowski problem.
引用
收藏
页码:273 / 278
页数:6
相关论文
共 50 条
  • [41] MV-POLYTOPES VIA AFFINE BUILDINGS
    Ehrig, Michael
    [J]. DUKE MATHEMATICAL JOURNAL, 2010, 155 (03) : 433 - 482
  • [42] THE CENTRO-AFFINE MINKOWSKI PROBLEM FOR POLYTOPES
    Zhu, Guangxian
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2015, 101 (01) : 159 - 174
  • [43] RANDOM POLYTOPES AND AFFINE SURFACE-AREA
    SCHUTT, C
    [J]. MATHEMATISCHE NACHRICHTEN, 1994, 170 : 227 - 249
  • [44] Invariant affine subspaces
    Paweł Wójcik
    [J]. Aequationes mathematicae, 2023, 97 : 1129 - 1139
  • [45] Affine invariant triangulations
    Bose, Prosenjit
    Cano, Pilar
    Silveira, Rodrigo I.
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2021, 91
  • [46] AFFINE INVARIANT POINTS
    Meyer, Mathieu
    Schuett, Carsten
    Werner, Elisabeth M.
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2015, 208 (01) : 163 - 192
  • [47] Affine invariant tetrahedrization
    Lee, K
    [J]. VISION GEOMETRY V, 1996, 2826 : 308 - 315
  • [48] Affine invariant points
    Mathieu Meyer
    Carsten Schütt
    Elisabeth M. Werner
    [J]. Israel Journal of Mathematics, 2015, 208 : 163 - 192
  • [49] SL(n) Invariant Valuations on Polytopes
    Monika Ludwig
    Matthias Reitzner
    [J]. Discrete & Computational Geometry, 2017, 57 : 571 - 581
  • [50] Invariant affine subspaces
    Wojcik, Pawel
    [J]. AEQUATIONES MATHEMATICAE, 2023, 97 (5-6) : 1129 - 1139