A Novel Error Analysis of Spectral Method for the Anomalous Subdiffusion Problems with Multi-term Time-fractional Derivative

被引:0
|
作者
Bo TANG [1 ]
Yan-ping CHEN [1 ]
Bin XIE [1 ]
Xiu-xiu LIN [1 ]
机构
[1] School of Mathematical Sciences, South China Normal University
基金
国家自然科学基金重点项目;
关键词
D O I
暂无
中图分类号
O241.8 [微分方程、积分方程的数值解法];
学科分类号
070102 ;
摘要
This paper aims to extend a space-time spectral method to address the multi-term time-fractional subdiffusion equations with Caputo derivative. In this method, the Jacobi polynomials are adopted as the basis functions for temporal discretization and the Lagrangian polynomials are used for spatial discretization. An efficient spectral approximation of the weak solution is established. The main work is the demonstration of the well-posedness for the weak problem and the derivation of a posteriori error estimates for the spectral Galerkin approximation. Extensive numerical experiments are presented to perform the validity of a posteriori error estimators, which support our theoretical results.
引用
收藏
页码:943 / 961
页数:19
相关论文
共 50 条
  • [31] The Novel Analytical-Numerical Method for Multi-Dimensional Multi-Term Time-Fractional Equations with General Boundary Conditions
    Lin, Ji
    Reutskiy, Sergiy
    Zhang, Yuhui
    Sun, Yu
    Lu, Jun
    [J]. MATHEMATICS, 2023, 11 (04)
  • [32] STOCHASTIC MODEL FOR MULTI-TERM TIME-FRACTIONAL DIFFUSION EQUATIONS WITH NOISE
    Hosseini, Vahid Reza
    Remazani, Mohamad
    Zou, Wennan
    Banihashemi, Seddigheh
    [J]. THERMAL SCIENCE, 2021, 25 (SpecialIssue 2): : S287 - S293
  • [33] Simulation of the approximate solutions of the time-fractional multi-term wave equations
    Abdel-Rehim, E. A.
    El-Sayed, A. M. A.
    Hashem, A. S.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) : 1134 - 1154
  • [34] Multi-term time-fractional stochastic system with multiple delays in control
    Raheem, A.
    Afreen, A.
    Khatoon, A.
    [J]. CHAOS SOLITONS & FRACTALS, 2023, 167
  • [35] Simultaneous inversion of the potential term and the fractional orders in a multi-term time-fractional diffusion equation
    Sun, L. L.
    Li, Y. S.
    Zhang, Y.
    [J]. INVERSE PROBLEMS, 2021, 37 (05)
  • [36] A posteriori error estimates of spectral Galerkin methods for multi-term time fractional diffusion equations
    Tang, Bo
    Chen, Yanping
    Lin, Xiuxiu
    [J]. APPLIED MATHEMATICS LETTERS, 2021, 120
  • [37] A fast linearized finite difference method for the nonlinear multi-term time-fractional wave equation
    Lyu, Pin
    Liang, Yuxiang
    Wang, Zhibo
    [J]. APPLIED NUMERICAL MATHEMATICS, 2020, 151 : 448 - 471
  • [38] A Mixed Finite Element Method for the Multi-Term Time-Fractional Reaction-Diffusion Equations
    Zhao, Jie
    Dong, Shubin
    Fang, Zhichao
    [J]. FRACTAL AND FRACTIONAL, 2024, 8 (01)
  • [39] Identification of the time-dependent source term in a multi-term time-fractional diffusion equation
    Y. S. Li
    L. L. Sun
    Z. Q. Zhang
    T. Wei
    [J]. Numerical Algorithms, 2019, 82 : 1279 - 1301
  • [40] Identification of the time-dependent source term in a multi-term time-fractional diffusion equation
    Li, Y. S.
    Sun, L. L.
    Zhang, Z. Q.
    Wei, T.
    [J]. NUMERICAL ALGORITHMS, 2019, 82 (04) : 1279 - 1301