A Smoothing SAA Method for a Stochastic Linear Complementarity Problem

被引:1
|
作者
Zhang Jie [1 ]
Zhang Hong-wei [2 ]
Zhang Li-wei [2 ]
Yin jing-xue
机构
[1] School of Mathematics, Liaoning Normal University
[2] School of Mathematical Sciences, Dalian University of Technology
关键词
aggregation technique; smoothing SAA method; stochastic linear complementarity problem;
D O I
10.13447/j.1674-5647.2013.02.005
中图分类号
O211.67 [期望与预测];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Utilizing the well-known aggregation technique, we propose a smoothing sample average approximation (SAA) method for a stochastic linear complementarity problem, where the underlying functions are represented by expectations of stochastic functions. The method is proved to be convergent and the preliminary numerical results are reported.
引用
收藏
页码:97 / 107
页数:11
相关论文
共 50 条
  • [41] AN OPTIMAL CONTROL PROBLEM WITH TERMINAL STOCHASTIC LINEAR COMPLEMENTARITY CONSTRAINTS
    Luo, Jianfeng
    Chen, Xiaojun
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (06) : 3370 - 3389
  • [42] Convergence of a smoothing algorithm for horizontal linear complementarity problem with a nonmonotone line search
    Zhao, Na
    Fang, Yu
    [J]. OPTIMIZATION, 2023,
  • [43] A Smoothing Quadratically Convergent Algorithm for Generalized Linear Complementarity Problem In Engineering Modeling
    Sun, Hongchun
    [J]. PROCEEDINGS OF THE 2009 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND NATURAL COMPUTING, VOL II, 2009, : 206 - 210
  • [44] A New Smoothing Inexact Newton Method for Generalized Nonlinear Complementarity Problem
    Su, Ke
    Lu, Xiaoli
    [J]. 2013 SIXTH INTERNATIONAL CONFERENCE ON BUSINESS INTELLIGENCE AND FINANCIAL ENGINEERING (BIFE), 2014, : 633 - 637
  • [45] A new smoothing and regularization Newton method for the symmetric cone complementarity problem
    Ruijuan Liu
    [J]. Journal of Applied Mathematics and Computing, 2017, 55 : 79 - 97
  • [46] A regularized smoothing Newton method for solving the symmetric cone complementarity problem
    Ma, Changfeng
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (9-10) : 2515 - 2527
  • [47] A REGULARIZED INEXACT SMOOTHING NEWTON METHOD FOR CIRCULAR CONE COMPLEMENTARITY PROBLEM
    Chi, Xiaoni
    Tao, Jiyuan
    Zhu, Zhibin
    Duan, Fujian
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2017, 13 (02): : 197 - 218
  • [48] An inexact smoothing method for the monotone complementarity problem over symmetric cones
    Zhang, Jian
    Zhang, Kecun
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2012, 27 (03): : 445 - 459
  • [49] A regularization smoothing method for second-order cone complementarity problem
    Zhang, Xiangsong
    Liu, Sanyang
    Liu, Zhenhua
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (01) : 731 - 740
  • [50] A smoothing Newton method for the second-order cone complementarity problem
    Tang, Jingyong
    He, Guoping
    Dong, Li
    Fang, Liang
    Zhou, Jinchuan
    [J]. APPLICATIONS OF MATHEMATICS, 2013, 58 (02) : 223 - 247