Low Dimensional Cohomology of Hom-Lie Algebras and q-deformed W(2, 2) Algebra

被引:0
|
作者
La Mei YUAN [1 ]
Hong YOU [1 ,2 ]
机构
[1] Science Research Center, Academy of Fundamental and Interdisciplinary Sciences,Harbin Institute of Technology
[2] School of Mathematical Sciences, Suzhou University
基金
中国博士后科学基金; 中央高校基本科研业务费专项资金资助;
关键词
Hom-Lie algebras; q-deformed W(2; 2) algebra; derivation; second cohomology group; first cohomology group;
D O I
暂无
中图分类号
O154.2 [同调代数];
学科分类号
0701 ; 070101 ;
摘要
This paper aims to study low dimensional cohomology of Hom-Lie algebras and the qdeformed W(2, 2) algebra. We show that the q-deformed W(2, 2) algebra is a Hom-Lie algebra. Also,we establish a one-to-one correspondence between the equivalence classes of one-dimensional central extensions of a Hom-Lie algebra and its second cohomology group, leading us to determine the second cohomology group of the q-deformed W(2, 2) algebra. In addition, we generalize some results of derivations of finitely generated Lie algebras with values in graded modules to Hom-Lie algebras.As application, we compute all αk-derivations and in particular the first cohomology group of the q-deformed W(2, 2) algebra.
引用
收藏
页码:1073 / 1082
页数:10
相关论文
共 50 条
  • [41] Hom-Lie Superalgebras in Characteristic 2
    Bouarroudj, Sofiane
    Makhlouf, Abdenacer
    MATHEMATICS, 2023, 11 (24)
  • [42] A classification of low dimensional multiplicative Hom-Lie superalgebras
    Wang, Chunyue
    Zhang, Qingcheng
    Wei, Zhu
    OPEN MATHEMATICS, 2016, 14 : 613 - 628
  • [43] Cohomology Characterizations of Diagonal Non-Abelian Extensions of Regular Hom-Lie Algebras
    Song, Lina
    Tang, Rong
    SYMMETRY-BASEL, 2017, 9 (12):
  • [44] Representations of 3-Dimensional Simple Multiplicative Hom-Lie Algebras
    Li, Xiuxian
    ADVANCES IN MATHEMATICAL PHYSICS, 2013, 2013
  • [45] Hom-Lie structures on 3-dimensional skew symmetric algebras
    Ongong'a, Elvice
    Richter, Johan
    Silvestrov, Sergei
    XXVI INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES, 2019, 1416
  • [46] 3-Dimensional Skew-symmetric Algebras and the Variety of Hom-Lie Algebras
    Remm, Elisabeth
    ALGEBRA COLLOQUIUM, 2018, 25 (04) : 547 - 566
  • [47] A Schwinger term in q-deformed su(2) algebra
    Fujikawa, K
    Kubo, H
    Oh, CH
    MODERN PHYSICS LETTERS A, 1997, 12 (06) : 403 - 409
  • [48] THE Q-DEFORMED CARTESIAN OSP(1/2) ALGEBRA
    CHUNG, WS
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1995, 34 (06) : 889 - 893
  • [49] An extension of a q-deformed Heisenberg algebra and its Lie polynomials
    Cantuba, Rafael Reno S.
    Merciales, Mark Anthony C.
    EXPOSITIONES MATHEMATICAE, 2021, 39 (01) : 1 - 24
  • [50] The q-Deformed Cartesian osp(1/2) Algebra
    Chung, W.-S.
    International Journal of Theoretical Physics, 34 (06):