ROCK Inhibition with Fasudil Promotes Early Functional Recovery of Spinal Cord Injury in Rats by Enhancing Microglia Phagocytosis

被引:0
|
作者
付佩彩 [1 ]
唐荣华 [1 ]
万跃 [2 ]
谢敏杰 [1 ,3 ]
王伟 [1 ,3 ]
骆翔 [1 ]
喻志源 [1 ,3 ]
机构
[1] Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
[2] Department of Neurology, the Third People’s Hospital of Hubei Province
[3] Key Laboratory of Neurological Diseases of Huazhong University of Science and Technology, Ministry of Education of China
关键词
Rho/ROCK; microglia; spinal cord injury; phagocytosis;
D O I
暂无
中图分类号
R651.2 [脊髓];
学科分类号
1002 ; 100210 ;
摘要
Emerging evidence indicates that microglia activation plays an important role in spinal cord injury(SCI) caused by trauma. Studies have found that inhibiting the Rho/Rho-associated protein kinase(ROCK) signaling pathway can reduce inflammatory cytokine production by microglia. In this study, Western blotting was conducted to detect ROCK2 expression after the SCI; the ROCK Activity Assay kit was used for assay of ROCK pathway activity; microglia morphology was examined using the CD11 b antibody; electron microscopy was used to detect microglia phagocytosis; TUNEL was used to detect tissue cell apoptosis; myelin staining was performed using an antibody against myelin basic protein(MBP); behavioral outcomes were evaluated according to the methods of Basso, Beattie, and Bresnahan(BBB). We observed an increase in ROCK activity and microglial activation after SCI. The microglia became larger and rounder and contained myelin-like substances. Furthermore, treatment with fasudil inhibited neuronal cells apoptosis, alleviated demyelination and the formation of cavities, and improved motor recovery. The experimental evidence reveals that the ROCK inhibitor fasudil can regulate microglial activation, promote cell phagocytosis, and improve the SCI microenvironment to promote SCI repair. Thus, fasudil may be useful for the treatment of SCI.
引用
收藏
页码:31 / 36
页数:6
相关论文
共 50 条
  • [21] Geraniol promotes functional recovery and attenuates neuropathic pain in rats with spinal cord injury
    Lv, Yan
    Zhang, Liang
    Li, Na
    Mai, Naiken
    Zhang, Yu
    Pan, Shuyi
    CANADIAN JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY, 2017, 95 (12) : 1389 - 1395
  • [22] PROHIBITIN 1 GENE DELIVERY PROMOTES FUNCTIONAL RECOVERY IN RATS WITH SPINAL CORD INJURY
    Li, L.
    Guo, J. -D.
    Wang, H. -D.
    Shi, Y. -M.
    Yuan, Y. -L.
    Hou, S. -X.
    NEUROSCIENCE, 2015, 286 : 27 - 36
  • [23] Rolipram promotes functional recovery after contusive thoracic spinal cord injury in rats
    Costa, Luis M.
    Pereira, Jose E.
    Filipe, Vitor M.
    Magalhaes, Luis G.
    Couto, Pedro A.
    Gonzalo-Orden, Jose M.
    Raimondo, Stefania
    Geuna, Stefano
    Mauricio, Ana C.
    Nikulina, Elena
    Filbin, Marie T.
    Varejao, Artur S. P.
    BEHAVIOURAL BRAIN RESEARCH, 2013, 243 : 66 - 73
  • [24] Enoxaparin promotes functional recovery after spinal cord injury by
    Ito, Sadayuki
    Ozaki, Tomoya
    Morozumi, Masayoshi
    Imagama, Shiro
    Kadomatsu, Kenji
    Sakamoto, Kazuma
    EXPERIMENTAL NEUROLOGY, 2021, 340
  • [25] Deletion or Inhibition of Astrocytic Transglutaminase 2 Promotes Functional Recovery after Spinal Cord Injury
    Elahi, Anissa
    Emerson, Jacen
    Rudlong, Jacob
    Keillor, Jeffrey W.
    Salois, Garrick
    Visca, Adam
    Girardi, Peter
    Johnson, Gail V. W.
    Proschel, Christoph
    CELLS, 2021, 10 (11)
  • [26] Valproic acid reduces autophagy and promotes functional recovery after spinal cord injury in rats
    Hao, Hai-Hu
    Wang, Li
    Guo, Zhi-Jian
    Bai, Lang
    Zhang, Rui-Ping
    Shuang, Wei-Bing
    Jia, Yi-Jia
    Wang, Jie
    Li, Xiao-Yu
    Liu, Qiang
    NEUROSCIENCE BULLETIN, 2013, 29 (04) : 484 - 492
  • [27] Asiaticoside Inhibits Neuronal Apoptosis and Promotes Functional Recovery After Spinal Cord Injury in Rats
    Lei Fan
    Xiaobin Li
    Tao Liu
    Journal of Molecular Neuroscience, 2020, 70 : 1988 - 1996
  • [28] Valproic acid reduces autophagy and promotes functional recovery after spinal cord injury in rats
    Hai-Hu Hao
    Li Wang
    Zhi-Jian Guo
    Lang Bai
    Rui-Ping Zhang
    Wei-Bing Shuang
    Yi-Jia Jia
    Jie Wang
    Xiao-Yu Li
    Qiang Liu
    Neuroscience Bulletin, 2013, 29 (04) : 484 - 492
  • [29] BYHWD rescues axotomized neurons and promotes functional recovery after spinal cord injury in rats
    Chen, An
    Wang, Hui
    Zhang, Jianwei
    Wu, Xiaoqiong
    Liao, Jun
    Li, Hua
    Cai, Weijun
    Luo, Xuegang
    Ju, Gong
    JOURNAL OF ETHNOPHARMACOLOGY, 2008, 117 (03) : 451 - 456
  • [30] Neuroserpin restores autophagy and promotes functional recovery after acute spinal cord injury in rats
    Li, Zheng
    Liu, Fubing
    Zhang, Liang
    Cao, Yuanwu
    Shao, Yunchao
    Wang, Xiaofeng
    Jiang, Xiaoxing
    Chen, Zixian
    MOLECULAR MEDICINE REPORTS, 2018, 17 (02) : 2957 - 2963