Jacobi Elliptic Function Solutions of Some Nonlinear Evolution Equations

被引:0
|
作者
YE Cai-Er Department of Mathematics
机构
关键词
KdV equation; Ito equation; vKdV equation; AKNS equation; exact solution;
D O I
暂无
中图分类号
O411.1 [数学物理方法]; O175.2 [偏微分方程];
学科分类号
0701 ; 070104 ;
摘要
In this letter, the modified Jacobi elliptic function expansion method is extended to solve M-coupled KdV equation, M-coupled Ito equation, vKdV equation, and AKNS equation. Some new Jacobi elliptic function solutions are obtained by using Mathematica. When the modulus m→1, those periodic solutions degenerate as the corresponding soliton solutions.
引用
收藏
页码:804 / 806
页数:3
相关论文
共 50 条
  • [21] Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations
    Liu, SK
    Fu, ZT
    Liu, SD
    Zhao, Q
    PHYSICS LETTERS A, 2001, 289 (1-2) : 69 - 74
  • [22] Symbolic computation of Jacobi elliptic function solutions to nonlinear differential-difference equations
    Yong, Xuelin
    Zeng, Xin
    Zhang, Zhiyong
    Chen, Yufu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (07) : 1107 - 1114
  • [23] Hyperbolic function solutions for some nonlinear evolution equations
    Krishnan, E.V.
    Advances in Modelling and Analysis A: General Mathematical and Computer Tools, 24 (3-4): : 26 - 40
  • [24] A new method applied to obtain complex Jacobi elliptic function solutions of general nonlinear equations
    Zhao, Hong
    Niu, Hui-Juan
    CHAOS SOLITONS & FRACTALS, 2009, 41 (01) : 224 - 232
  • [25] New explicit Jacobi elliptic function solutions for the Zakharov equations
    Hong, Baojian
    Lu, Dianchen
    Liu, Yangzheng
    Journal of Information and Computational Science, 2013, 10 (13): : 4097 - 4104
  • [26] Jacobi elliptic function solutions for two variant Boussinesq equations
    Lü, D
    CHAOS SOLITONS & FRACTALS, 2005, 24 (05) : 1373 - 1385
  • [27] Some remarks on nonlinear elliptic equations and applications to Hamilton-Jacobi equations
    De Silva, D
    Trombetti, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (02): : 91 - 96
  • [28] Nodal solutions for some nonlinear elliptic equations
    Ben Mabrouk, Anouar
    Ben Mohamed, Mohamed Lakdar
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 186 (01) : 589 - 597
  • [29] EXISTENCE OF SOLUTIONS FOR SOME NONLINEAR ELLIPTIC EQUATIONS
    Anane, Aomar
    Chakrone, Omar
    Chehabi, Mohammed
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2006,
  • [30] Jacobi Elliptic Solutions for Nonlinear Differential Difference Equations in Mathematical Physics
    Gepreel, Khaled A.
    Shehata, A. R.
    JOURNAL OF APPLIED MATHEMATICS, 2012,