ORBITAL STABILITY FOR SCHRDINGER SYSTEMS WITH NONAUTONOMOUS COUPLED NONLINEARITIES

被引:0
|
作者
郭青 [1 ]
机构
[1] College of Science,Minzu University of China
关键词
Nonautonomous system; orbital stability; standing waves;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
We prove the existence and the orbital stability of standing waves for the nonau- tonomous Schrdinger system iut+ua(x)u+(|u|2p+b(x)|u| p-1 |v|p+1)u = 0, x∈ R N , ivt+va(x)v+|v|2p+b(x)|v| p-1|u|p+1v = 0, x∈RN under suitable conditions on the coefficient functions a and b. We follow the idea of analyzing the compactness of minimizing sequence of the constrained minimization problems.
引用
收藏
页码:495 / 504
页数:10
相关论文
共 50 条
  • [41] Local Nonautonomous Schr?dinger Flows on K?hler Manifolds
    Zong Lin JIA
    You De WANG
    ActaMathematicaSinica, 2019, 35 (08) : 1251 - 1299
  • [42] Partially concentrating standing waves for weakly coupled Schrödinger systems
    Pellacci, Benedetta
    Pistoia, Angela
    Vaira, Giusi
    Verzini, Gianmaria
    MATHEMATISCHE ANNALEN, 2024, 390 (03) : 3691 - 3722
  • [43] MULTIPLE SOLUTIONS AND THEIR LIMITING BEHAVIOR OF COUPLED NONLINEAR SCHRDINGER SYSTEMS
    万优艳
    ActaMathematicaScientia, 2010, 30 (04) : 1199 - 1218
  • [44] Prescribed Mass Solutions to Schrödinger Systems With linear Coupled Terms
    Haixia Chen
    Xiaolong Yang
    The Journal of Geometric Analysis, 2023, 33
  • [45] An Implementation of Haar Wavelet Based Method for Numerical Treatment of Time-fractional Schrdinger and Coupled Schrdinger Systems
    Najeeb Alam Khan
    Tooba Hameed
    IEEE/CAAJournalofAutomaticaSinica, 2019, 6 (01) : 177 - 187
  • [46] Incompressible and Compressible Limits of Coupled Systems of Nonlinear Schrödinger Equations
    Tai-Chia Lin
    Ping Zhang
    Communications in Mathematical Physics, 2006, 266 : 547 - 569
  • [47] Orbital stability of periodic standing waves for the cubic fractional nonlinear Schr?dinger equation
    Moraes, Gabriel E. Bittencourt
    Borluk, Handan
    de Loreno, Guilherme
    Muslu, Gulcin M.
    Natali, Fabio
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 341 : 263 - 291
  • [48] Nonautonomous soliton, controllable interaction and numerical simulation for generalized coupled cubic–quintic nonlinear Schrödinger equations
    Fajun Yu
    Nonlinear Dynamics, 2016, 85 : 1203 - 1216
  • [49] Semiclassical states for fractional Schrödinger equations with critical nonlinearities
    Du, Jia-Lu
    Dai, Ting-Ting
    Ou, Zeng-Qi
    Lv, Ying
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (04) : 2294 - 2310
  • [50] Nonautonomous and non periodic Schrödinger equation with indefinite linear part
    L. A. Maia
    J. C. Oliveira Junior
    R. Ruviaro
    Journal of Fixed Point Theory and Applications, 2017, 19 : 17 - 36