ORBITAL STABILITY FOR SCHRDINGER SYSTEMS WITH NONAUTONOMOUS COUPLED NONLINEARITIES

被引:0
|
作者
郭青 [1 ]
机构
[1] College of Science,Minzu University of China
关键词
Nonautonomous system; orbital stability; standing waves;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
We prove the existence and the orbital stability of standing waves for the nonau- tonomous Schrdinger system iut+ua(x)u+(|u|2p+b(x)|u| p-1 |v|p+1)u = 0, x∈ R N , ivt+va(x)v+|v|2p+b(x)|v| p-1|u|p+1v = 0, x∈RN under suitable conditions on the coefficient functions a and b. We follow the idea of analyzing the compactness of minimizing sequence of the constrained minimization problems.
引用
收藏
页码:495 / 504
页数:10
相关论文
共 50 条
  • [1] ORBITAL STABILITY FOR SCHRODINGER SYSTEMS WITH NONAUTONOMOUS COUPLED NONLINEARITIES
    Guo, Qing
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (02) : 495 - 504
  • [2] On a class of three coupled fractional Schr o•dinger systems with general nonlinearities
    Lu, Dengfeng
    Dai, Shuwei
    AIMS MATHEMATICS, 2023, 8 (07): : 17142 - 17153
  • [3] Ground states for a coupled Schrödinger system with general nonlinearities
    Xueliang Duan
    Gongming Wei
    Haitao Yang
    Boundary Value Problems, 2020
  • [4] On coupled nonlinear Schrödinger systems
    T. Saanouni
    Arabian Journal of Mathematics, 2019, 8 : 133 - 151
  • [5] Orbital Stability of Nonlinear Schrödinger–Kirchhoff Equations
    Enhao Lan
    Mediterranean Journal of Mathematics, 2022, 19
  • [6] Attractors of nonautonomous Schrödinger equations
    Yu-rong L.
    Zeng-rong L.
    Yong-ai Z.
    Applied Mathematics and Mechanics, 2001, 22 (2) : 180 - 189
  • [7] Attractors of Nonautonomous Schrödinger Equations
    Yu-rong Liu
    Zeng-rong Liu
    Yong-ai Zheng
    Applied Mathematics and Mechanics, 2001, 22 : 180 - 189
  • [8] Stability of Standing Waves for Nonlinear Schrödinger Equations with Inhomogeneous Nonlinearities
    Anne De Bouard
    Reika Fukuizumi
    Annales Henri Poincaré, 2005, 6 : 1157 - 1177
  • [9] On energy stability for the coupled nonlinear Schrödinger system
    Li Ma
    Lin Zhao
    Zeitschrift für angewandte Mathematik und Physik, 2009, 60 : 774 - 784
  • [10] Orbital stability of periodic waves for the nonlinear Schrödinger equation
    Thierry Gallay
    Mariana Hǎrǎgus
    Journal of Dynamics and Differential Equations, 2007, 19 : 825 - 865