On the Multi-Dimensional Duality Principle of Sawyer Type

被引:0
|
作者
YVES RAKOTONDRATSIMBA [1 ]
机构
[1] Institut Polytechnique St-Louis, EPMI 13, boulevard de l’Hautil 95 092 Cergy-Pontoise cedex France
关键词
Multi--dimensional duality principle; Doubling weights; Weighted inequalities; Decreasing functions;
D O I
暂无
中图分类号
O174 [函数论];
学科分类号
070104 ;
摘要
A multi-dimensional version of the duality principle of Sawyer type [1] is obtained wheneverthe corresponding weight satisfies some doubling property.
引用
收藏
页码:81 / 88
页数:8
相关论文
共 50 条
  • [31] MULTI-DIMENSIONAL TV
    Gomes, Lee
    FORBES, 2010, 185 (02): : 36 - 36
  • [32] ON MULTI-DIMENSIONAL TIME
    BUNGE, M
    BRITISH JOURNAL FOR THE PHILOSOPHY OF SCIENCE, 1958, 9 (33): : 39 - 39
  • [33] Multi-Dimensional Markov Chains of M/G/1 Type
    Naumov, Valeriy
    Samouylov, Konstantin
    MATHEMATICS, 2025, 13 (02)
  • [34] MULTI-DIMENSIONAL WEYL ALMOST PERIODIC TYPE FUNCTIONS AND APPLICATIONS
    Kostic, Marko
    Fedorov, Vladimir E.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2023, 17 (02) : 446 - 479
  • [35] MULTI-DIMENSIONAL BESICOVITCH ALMOST PERIODIC TYPE FUNCTIONS AND APPLICATIONS
    Kostic, Marko
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (12) : 4215 - 4250
  • [36] Design Gaussian information granule based on the principle of justifiable granularity: A multi-dimensional perspective
    Wang, Degang
    Liu, Hao
    Pedrycz, Witold
    Song, Wenyan
    Li, Hongxing
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 197
  • [37] Utilization of multi-dimensional source correlation in multi-dimensional single parity check codes
    Mohd Azri Mohd Izhar
    Xiaobo Zhou
    Tad Matsumoto
    Telecommunication Systems, 2016, 62 : 735 - 745
  • [38] Utilization of multi-dimensional source correlation in multi-dimensional single parity check codes
    Izhar, Mohd Azri Mohd
    Zhou, Xiaobo
    Matsumoto, Tad
    TELECOMMUNICATION SYSTEMS, 2016, 62 (04) : 735 - 745
  • [39] MULTI-DIMENSIONAL c-ALMOST PERIODIC TYPE FUNCTIONS AND APPLICATIONS
    Kostic, Marko
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 2022 (45)
  • [40] Negative-Type Diversities, a Multi-dimensional Analogue of Negative-Type Metrics
    Pei Wu
    David Bryant
    Paul Tupper
    The Journal of Geometric Analysis, 2021, 31 : 1703 - 1720