ON A CONJECTURE FOR THE NUMBER OF MULTIPLICATIVE PARTITIONS OF A NATURAL NUMBER

被引:0
|
作者
陈小夏
机构
[1] PRC
[2] Hangzhou Normal College
[3] Hangzhou 310012
[4] Department of Mathematics
关键词
In; ON A CONJECTURE FOR THE NUMBER OF MULTIPLICATIVE PARTITIONS OF A NATURAL NUMBER;
D O I
暂无
中图分类号
学科分类号
摘要
Let f(n)denote the number of factorizations of the natural number n into factors larger than 1, not considering the order of the factors. We call each of these factorizations a multiplicative partition of n, or simply, partition. Also let f(1)=1. On the upper bound of f(n), J. F. Hughes and J. O. Shallit proved that f(n)≤2n~(2) and mentioned two conjectures:
引用
收藏
页码:517 / 518
页数:2
相关论文
共 50 条
  • [41] ON THE NUMBER OF FIBONACCI PARTITIONS OF A SET
    PRODINGER, H
    [J]. FIBONACCI QUARTERLY, 1981, 19 (05): : 463 - 465
  • [42] Universal formulas for the number of partitions
    Srdanov, Aleksa
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (04):
  • [43] Number of distinguishing colorings and partitions
    Ahmadi, Bahman
    Alinaghipour, Fatemeh
    Shekarriz, Mohammad Hadi
    [J]. DISCRETE MATHEMATICS, 2020, 343 (09)
  • [44] Partitions with Fixed Number of Sizes
    Christopher, David
    [J]. JOURNAL OF INTEGER SEQUENCES, 2015, 18 (11)
  • [45] On the Partitions of a Number into Arithmetic Progressions
    Munagi, Augustine O.
    Shonhiwa, Temba
    [J]. JOURNAL OF INTEGER SEQUENCES, 2008, 11 (05)
  • [46] Asymptotics of the Number of Restricted Partitions
    Chernyshev, V. L.
    Hilberdink, T. W.
    Nazaikinskii, V. E.
    [J]. RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2020, 27 (04) : 456 - 468
  • [47] An expansion for the number of partitions of an integer
    Stella Brassesco
    Arnaud Meyroneinc
    [J]. The Ramanujan Journal, 2020, 51 : 563 - 592
  • [48] On the number of partitions with designated summands
    Chen, William Y. C.
    Ji, Kathy Q.
    Jin, Hai-Tao
    Shen, Erin Y. Y.
    [J]. JOURNAL OF NUMBER THEORY, 2013, 133 (09) : 2929 - 2938
  • [49] Wild Partitions and Number Theory
    Roberts, David P.
    [J]. JOURNAL OF INTEGER SEQUENCES, 2007, 10 (06)
  • [50] Universal formulas for the number of partitions
    Aleksa Srdanov
    [J]. Proceedings - Mathematical Sciences, 2018, 128