Non-Nehari manifold method for asymptotically periodic Schrdinger equations

被引:2
|
作者
TANG XianHua [1 ]
机构
[1] School of Mathematics and Statistics, Central South University
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Schrdinger equation; non-Nehari manifold method; asymptotically periodic; ground state solutions of Nehari-Pankov type;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
We consider the semilinear Schrdinger equation-△u + V(x)u = f(x, u), x ∈ RN,u ∈ H 1(RN),where f is a superlinear, subcritical nonlinearity. We mainly study the case where V(x) = V0(x) + V1(x),V0∈ C(RN), V0(x) is 1-periodic in each of x1, x2,..., x N and sup[σ(-△ + V0) ∩(-∞, 0)] < 0 < inf[σ(-△ +V0)∩(0, ∞)], V1∈ C(RN) and lim|x|→∞V1(x) = 0. Inspired by previous work of Li et al.(2006), Pankov(2005)and Szulkin and Weth(2009), we develop a more direct approach to generalize the main result of Szulkin and Weth(2009) by removing the "strictly increasing" condition in the Nehari type assumption on f(x, t)/|t|. Unlike the Nahari manifold method, the main idea of our approach lies on finding a minimizing Cerami sequence for the energy functional outside the Nehari-Pankov manifold N0 by using the diagonal method.
引用
收藏
页码:715 / 728
页数:14
相关论文
共 50 条