Pricing Formulae of Asian Options under the Fractional Brownian Motion

被引:0
|
作者
张超 [1 ]
张寄洲 [1 ]
机构
[1] Mathematics & Science College,Shanghai Normal University
关键词
fractional Brownian motion; Asian option; Black-Scholes formula;
D O I
10.19884/j.1672-5220.2010.05.013
中图分类号
O211.6 [随机过程];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper,the pricing formulae of the geometric average Asian call option with the fixed and floating strike price under the fractional Brownian motion(FBM)are given out by the method of partial differential equation(PDE).The call-put parity for the geometric average Asian options is given.The results are generalization of option pricing under standard Brownian motion.
引用
下载
收藏
页码:656 / 659
页数:4
相关论文
共 50 条
  • [31] Pricing of Equity Indexed Annuity under Fractional Brownian Motion Model
    Xu, Lin
    Shen, Guangjun
    Yao, Dingjun
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [32] Option pricing with regulated fractional Brownian motion
    Aldabe, F
    Barone-Adesi, G
    Elliott, RJ
    APPLIED STOCHASTIC MODELS AND DATA ANALYSIS, 1998, 14 (04): : 285 - 294
  • [33] The application of fractional brownian motion in option pricing
    Zhou, Qing-Xin
    International Journal of Multimedia and Ubiquitous Engineering, 2015, 10 (01): : 173 - 182
  • [34] Perpetual American options with fractional Brownian motion
    Elliott, RJ
    Chan, LL
    QUANTITATIVE FINANCE, 2004, 4 (02) : 123 - 128
  • [35] The valuation of currency options by fractional Brownian motion
    Shokrollahi, Foad
    Kilicman, Adem
    SPRINGERPLUS, 2016, 5
  • [36] Option pricing in the illiquid markets under the mixed fractional Brownian motion model
    Ma, Pengcheng
    Taghipour, Mehran
    Cattani, Carlo
    CHAOS SOLITONS & FRACTALS, 2024, 182
  • [37] Option Pricing with Transaction Costs under the Subdiffusive Mixed Fractional Brownian Motion
    Miao, Jie
    2020 3RD INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELING AND SIMULATION, 2020, 1670
  • [38] A very efficient approach for pricing barrier options on an underlying described by the mixed fractional Brownian motion
    Ballestra, Luca Vincenzo
    Pacelli, Graziella
    Radi, Davide
    CHAOS SOLITONS & FRACTALS, 2016, 87 : 240 - 248
  • [39] The pricing of credit default swaps under a generalized mixed fractional Brownian motion
    He, Xinjiang
    Chen, Wenting
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 404 : 26 - 33
  • [40] Equity warrants pricing model under Fractional Brownian motion and an empirical study
    Zhang, Wei-Guo
    Xiao, Wei-Lin
    He, Chun-Xiong
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (02) : 3056 - 3065