Characterization of Compact Support of Fourier Transform for Orthonormal Wavelets of L~2(R~d)

被引:0
|
作者
Zhi Hua ZHANG (Zhihua ZHANG) Department of Mathematics
机构
关键词
Orthonormal wavelets; Multiresolution analysis; Scaling function; Compact support;
D O I
暂无
中图分类号
O174.22 [傅里叶积分(傅里叶变换)];
学科分类号
070104 ;
摘要
Let{} be an orthonormal wavelet of L~2(R~d) and the support of a whole of its Fouriertransform be Under the weakest,condition that each || is continuous for ω∈ (Π~d[A,D]),a characterizationof the above support of a whole is given.
引用
收藏
页码:855 / 864
页数:10
相关论文
共 50 条
  • [11] Frame Wavelets with Compact Supports for L~2(R~n)
    De Yun YANG
    Xing Wei ZHOU
    Zhu Zhi YUAN
    [J]. Acta Mathematica Sinica,English Series, 2007, 23 (02) : 349 - 356
  • [12] Special affine multiresolution analysis and the construction of orthonormal wavelets in L2(R)
    Shah, Firdous A.
    Lone, Waseem Z.
    [J]. APPLICABLE ANALYSIS, 2022, : 2540 - 2566
  • [13] Quadratic Phase Multiresolution Analysis and the Construction of Orthonormal Wavelets in L2(R)
    Gupta, Bivek
    Kaur, Navneet
    Verma, Amit K.
    Agarwal, Ravi P.
    [J]. AXIOMS, 2023, 12 (10)
  • [14] EXTENDED FRACTIONAL FOURIER TRANSFORM OF DISTRIBUTIONS OF COMPACT SUPPORT
    Gudadhe, Alka S.
    Naveen, A.
    [J]. JOURNAL OF SCIENCE AND ARTS, 2013, (04): : 345 - 354
  • [15] Dyadic Bivariate Fourier Multipliers for Multi-Wavelets in L~2(R~2)
    Zhongyan Li
    Xiaodi Xu
    [J]. Analysis in Theory and Applications, 2015, 31 (03) : 221 - 235
  • [16] Spectral Models for Orthonormal Wavelets and Multiresolution Analysis of L2(ℝ)
    F. Gómez-Cubillo
    Z. Suchanecki
    [J]. Journal of Fourier Analysis and Applications, 2011, 17 : 191 - 225
  • [17] Some New Estimates of the Fourier Transform in L2(R)
    Abilov, V. A.
    Abilova, F. V.
    Kerimov, M. K.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (09) : 1231 - 1238
  • [18] Allan Variance Characterization of Compact Fourier Transform Infrared Spectrometers
    Adib, George A.
    Sabry, Yasser M.
    Khalil, Diaa
    [J]. APPLIED SPECTROSCOPY, 2023, 77 (07) : 734 - 743
  • [19] The Fourier Transform of some distributions from D'(R) and D'(R2) with applications in mechanics
    Toma, Antonela
    [J]. RECENT ADVANCES IN ACOUSTICS & MUSIC, 2010, : 51 - 54
  • [20] BOCHKAREV INEQUALITY FOR THE FOURIER TRANSFORM OF FUNCTIONS IN THE LORENTZ SPACES L-2,L-r(R)
    Mussabayeva, G. K.
    Tleukhanova, N. T.
    [J]. EURASIAN MATHEMATICAL JOURNAL, 2015, 6 (01): : 76 - 84