Characterization of Carbon Plasma Evolution Using Laser Ablation TOF Mass Spectrometry

被引:0
|
作者
张磊 [1 ]
冯春雷 [1 ]
肖青梅 [1 ]
海然 [1 ]
丁洪斌 [1 ]
机构
[1] Key Laboratory of Materials Modification by Laser,Ion and Electron Beams,Chinese Ministry of Education,School of Physics and Optical Electronic Technology,Dalian University of Technology
基金
中国国家自然科学基金; 中央高校基本科研业务费专项资金资助;
关键词
carbon cluster; plasma-facing component(PFC); laser ablation; TOF mass spectrometry; graphite;
D O I
暂无
中图分类号
O53 [等离子体物理学]; TN249 [激光的应用];
学科分类号
070204 ; 0803 ; 080401 ; 080901 ;
摘要
In this work, a time-of-flight(TOF) mass spectrometer has been used to investigate the distribution of intermediate species and formation process of carbon clusters. The graphite sample was ablated by Nd:YAG laser(532 nm and 1064 nm). The results indicate that the maximum size distribution shifted towards small cluster ions as the laser fluence increased, which happened because of the fragmentation of larger clusters in the hot plume. The temporal evolution of ions was measured by varying the delay time of the ion extraction pulse with respect to the laser irradiation, which was used to provide distribution information of the species in the ablated plasma plume. When the laser fluence decreased, the yield of all of the clusters obviously dropped.
引用
收藏
页码:958 / 963
页数:6
相关论文
共 50 条
  • [31] Advances in trace element solid sample analysis: Laser ablation laser ionization tof mass spectrometry (lali-tof-ms)
    Williams, Jeffrey
    Putman, Jonathan
    1600, Advanstar Communications Inc. (35): : 9 - 16
  • [32] Laser ablation-inductively coupled plasma mass spectrometry for the characterization of pigments in prehistoric rock art
    Resano, Martin
    Garcia-Ruiz, Esperanza
    Alloza, Ramiro
    Marzo, Maria P.
    Vandenabeele, Peter
    Vanhaecke, Frank
    ANALYTICAL CHEMISTRY, 2007, 79 (23) : 8947 - 8955
  • [33] Advances in Trace Element Solid Sample Analysis: Laser Ablation Laser Ionization TOF Mass Spectrometry (LALI-TOF-MS)
    Williams, Jeffrey
    Putman, Jonathan
    SPECTROSCOPY, 2020, 35 (05) : 9 - 16
  • [34] Laser ablation inductively coupled plasma mass spectrometry: Principles and applications
    Mokgalaka, NS
    Gardea-Torresdey, JL
    APPLIED SPECTROSCOPY REVIEWS, 2006, 41 (02) : 131 - 150
  • [35] Petrochronology by Laser-Ablation Inductively Coupled Plasma Mass Spectrometry
    Kylander-Clark, Andrew R. C.
    PETROCHRONOLOGY: METHODS AND APPLICATIONS, 2017, 83 : 183 - +
  • [36] Laser-ablation inductively-coupled plasma mass spectrometry
    Günther, D
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2002, 372 (01) : 31 - 32
  • [37] Nanoparticle enhanced laser ablation inductively coupled plasma mass spectrometry
    Mangone, Annarosa
    Mastrorocco, Fabrizio
    Giannossa, Lorena Carla
    Comparelli, Roberto
    Dell'Aglio, Marcella
    De Giacomo, Alessandro
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2020, 163 (163)
  • [38] Spatial resolution in laser ablation inductively coupled plasma mass spectrometry
    Coedo, A. G.
    Dorado, M. T.
    REVISTA DE METALURGIA, 2010, 46 (01) : 52 - 68
  • [39] Elemental fractionation in laser ablation inductively coupled plasma mass spectrometry
    Longerich, HP
    Gunther, D
    Jackson, SE
    FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY, 1996, 355 (5-6): : 538 - 542
  • [40] Analyte response in laser ablation inductively coupled plasma mass spectrometry
    Wang, ZK
    Hattendorf, B
    Günther, D
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2006, 17 (05) : 641 - 651