THE VOLTERRA MODEL FOR THREE SPACIES PREDATOR-PREY SYSTEMS IN LOOPS

被引:0
|
作者
王远世
吴红
朱思铭
机构
[1] Guangzhou 510275
[2] Zhongshan University
[3] College of Math. & Scientific Computations
关键词
Darboux method; predator-prey model of three-species; globally asymptotically stable; Stocks theorem;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
We consider the three species predator-prey model with the same intrinsic growth rates, where species 3 feeds on species 2, species 2 feeds on species 1, species 1 feeds on species 3. An open question raised by Nishan Krikorian is answered: We obtain the necessary and sufficient conditions for all the orbits to be unbounded. We also obtain the necessary and sufficient conditions for the positive equilibrium to be globally stable. It is shown that there exists a family of neutrally stable periodic orbits, in which we extend Darboux method to three-species models for the first time.
引用
收藏
页码:76 / 83
页数:8
相关论文
共 50 条
  • [41] Dynamics of a predator-prey model
    Sáez, ES
    González-Olivares, E
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1999, 59 (05) : 1867 - 1878
  • [42] The simplest predator-prey model
    Kallay, Michael
    Cohen, Yosef
    [J]. ECOLOGICAL MODELLING, 2008, 218 (3-4) : 398 - 399
  • [43] On the entropy of the predator-prey model
    Balestrino, A.
    Cavallo, A.
    De Maria, G.
    [J]. 2014 8TH ANNUAL IEEE SYSTEMS CONFERENCE (SYSCON), 2014, : 357 - 363
  • [44] MODEL OF PREDATOR-PREY RELATIONSHIP
    GILPIN, ME
    [J]. THEORETICAL POPULATION BIOLOGY, 1974, 5 (03) : 333 - 344
  • [45] Asymptotic behaviour in periodic three species predator-prey systems
    Lisena, Benedetta
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2007, 186 (01) : 85 - 98
  • [46] On the relationship between cyclic and hierarchical three-species predator-prey systems and the two-species Lotka-Volterra model
    He, Q.
    Taeuber, U. C.
    Zia, R. K. P.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (04):
  • [47] On the relationship between cyclic and hierarchical three-species predator-prey systems and the two-species Lotka-Volterra model
    Q. He
    U. C. Täuber
    R. K. P. Zia
    [J]. The European Physical Journal B, 2012, 85
  • [48] Predator-prey fuzzy model
    Peixoto, Magda da Silva
    de Barros, Laecio Carvalho
    Bassanezi, Rodney Carlos
    [J]. ECOLOGICAL MODELLING, 2008, 214 (01) : 39 - 44
  • [49] ON MAYS PREDATOR-PREY MODEL
    KAPUR, JN
    KAPUR, S
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1981, 12 (11): : 1299 - 1311
  • [50] Influence of predator mutual interference and prey refuge on Lotka-Volterra predator-prey dynamics
    Chen, Liujuan
    Chen, Fengde
    Wang, Yiqin
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (11) : 3174 - 3180