The research of space-time coupled spectral element method for acoustic wave equations

被引:3
|
作者
GENG Yanhui [1 ]
QIN Guoliang [1 ]
WANG Yang [1 ]
HE Wei [1 ]
机构
[1] Institute of Fluid Machinery,Xi’an Jiaotong University
关键词
time; wave; The research of space-time coupled spectral element method for acoustic wave equations;
D O I
10.15949/j.cnki.0217-9776.2016.01.003
中图分类号
O422 [声的传播]; O241.82 [偏微分方程的数值解法];
学科分类号
070102 ; 070206 ; 082403 ;
摘要
A space-time coupled spectral element method based on Chebyshev polynomials is presented for solving time-dependent wave equations.Acoustic propagation problems in1+1,2+1,3+1 dimensions with the Dirichlet boundary conditions are simulated via space-time coupled spectral element method using quadrilateral,hexahedral and tesseractic elements respectively.Space-time coupled spectral element method can obtain high-order precision over time.With the same total number of nodes,higher numerical precision is obtained if the higher-order Chebyshev polynomials in space directions and lower-order Chebyshev polynomials in time direction are adopted.Numerical illustrations have indicated that the space-time algorithm provides higher precision than the semi-discretization.When space-time coupled spectral element method is used,time subdomain-by-subdomain approach is more economical than time domain approach.
引用
下载
收藏
页码:29 / 47
页数:19
相关论文
共 50 条
  • [11] Space-time spectral element method for optimal slewing of a flexible beam
    Technion - Israel Inst of Technology, Haifa, Israel
    Int J Numer Methods Eng, 18 (3101-3121):
  • [12] A SPACE-TIME DISCONTINUOUS GALERKIN SPECTRAL ELEMENT METHOD FOR THE STEFAN PROBLEM
    Pei, Chaoxu
    Sussman, Mark
    Hussaini, M. Yousuff
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (09): : 3595 - 3622
  • [13] Space-time spectral element method for optimal slewing of a flexible beam
    BenTal, A
    BarYoseph, PZ
    Flashner, H
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1996, 39 (18) : 3101 - 3121
  • [14] A space-time spectral method for multi-dimensional Sobolev equations
    Tang, Siqin
    Li, Hong
    Yin, Baoli
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 499 (01)
  • [15] An unconditionally stable space-time isogeometric method for the acoustic wave equation
    Fraschini, S.
    Loli, G.
    Moiola, A.
    Sangalli, G.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 169 : 205 - 222
  • [16] GALERKIN FINITE ELEMENT APPROXIMATIONS FOR STOCHASTIC SPACE-TIME FRACTIONAL WAVE EQUATIONS
    Li, Yajing
    Wang, Yejuan
    Deng, Weihua
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (06) : 3173 - 3202
  • [17] INTERPRETATIONS OF SPACE-TIME SPECTRAL ENERGY EQUATIONS
    HAYASHI, Y
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 1982, 39 (03) : 685 - 688
  • [18] A SPACE-TIME FINITE-ELEMENT METHOD FOR THE WAVE-EQUATION
    FRENCH, DA
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1993, 107 (1-2) : 145 - 157
  • [19] Space-Time Coupled Least-Squares Spectral Element Methods for Parabolic Problems
    Biswas, Pankaj
    Dutt, Pravir
    Ghorai, S.
    Kumar, N. Kiskore
    INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2019, 20 (05): : 358 - 371
  • [20] Mixed time discontinuous space-time finite element method for convection diffusion equations
    刘洋
    李宏
    何斯日古楞
    Applied Mathematics and Mechanics(English Edition), 2008, (12) : 1579 - 1586