Comparison of two wind algorithms of ENVISAT ASAR at high wind

被引:0
|
作者
宋贵霆
侯一筠
何宜军
机构
[1] Institute of Oceanology
[2] Institute of Oceanology Chinese Academy of Sciences
[3] Qingdao 266071
[4] China Graduate School of Chinese Academy of Sciences
[5] Beijing 100049
基金
中国国家自然科学基金;
关键词
ENVISAT ASAR; wind retrieval; wind speed;
D O I
暂无
中图分类号
P714.2 [];
学科分类号
0706 ; 070601 ;
摘要
Two wind algorithms of ENVISAT advanced synthetic aperture radar (ASAR), i. e. CMOD4 model from the European Space Agency (ESA) and CMOD IFR2 model from Quilfen et al., are compared in this paper. The wind direction is estimated from orientation of low and linear signatures in the ASAR imagery. The wind direction has inherently a 180° ambiguity since only a single ASAR image is used. The 180° ambiguity is eliminated by using the buoy data from the NOAA (National Oceanic and Atmospheric Administration) buoys moored in the Pacific. Wind speed is obtained with the two wind algorithms using both estimated wind direction and normalized radar cross section (NRCS). The retrieved wind results agree well with the data from Quikscat. The root mean square error (RMSE) of wind direction is 2.80? The RMSEs of wind speed from CMOD4 model and CMODFR2 model are 1.09 m/s and 0.60 m/s, respectively. The results indicate that the CMODFR2 model is slight better than CMOD4 model at high wind.
引用
收藏
页码:92 / 96
页数:5
相关论文
共 50 条
  • [1] Comparison of two wind algorithms of ENVISAT ASAR at high wind
    Song Guiting
    Hou Yijun
    He Yijun
    [J]. Chinese Journal of Oceanology and Limnology, 2006, 24 (1): : 92 - 96
  • [2] Validation of wind vector retrieval from ENVISAT ASAR images
    He, YJ
    Zou, QP
    Perrie, W
    [J]. IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 3184 - 3187
  • [3] Ocean wind field retrieval using ENVISAT ASAR data
    Horstmann, J
    Koch, W
    [J]. IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 3102 - 3104
  • [4] Evaluation of an operational SAR wind field retrieval algorithm for ENVISAT ASAR
    Horstmann, J
    Koch, WG
    [J]. IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 44 - 47
  • [5] ASAR/ENVISAT images for the calibration of the wind hydrodynamic effect on Donana wetlands
    Marti-Cardona, Belen
    Thanh Duc Tran
    Blade-Castellet, Ernest
    Dolz-Ripolles, Josep
    [J]. REMOTE SENSING AND HYDROLOGY, 2012, 352 : 459 - 463
  • [6] A Comparison of Algorithms for Retrieving Soil Moisture from ENVISAT/ASAR Images
    Paloscia, Simonetta
    Pampaloni, Paolo
    Pettinato, Simone
    Santi, Emanuele
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (10): : 3274 - 3284
  • [7] Offshore wind climatology based on synergetic use of Envisat ASAR, ASCAT and QuikSCAT
    Hasager, Charlotte B.
    Mouche, Alexis
    Badger, Merete
    Bingol, Ferhat
    Karagali, Ioanna
    Driesenaar, Tilly
    Stoffelen, Ad
    Pena, Alfredo
    Longepe, Nicolas
    [J]. REMOTE SENSING OF ENVIRONMENT, 2015, 156 : 247 - 263
  • [8] Evaluation of ENVISAT ASAR data for measurement of surface wind field over the Korean east coast
    Kim, D
    Moon, WM
    Nam, SH
    [J]. IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 2712 - 2714
  • [9] Use of SAR cross spectra for wind retrieval from ENVISAT ASAR wave mode data
    Schneiderhan, T
    Schulz-Stellenfleth, J
    Lehner, S
    Horstmann, J
    Hoja, D
    [J]. IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 1915 - 1917
  • [10] Influence of Swell Wave on Wind Speed Retrieval Using ENVISAT ASAR Wave Mode Imagery
    Wang, Duo
    Wang, Xiaochen
    Jiao, Weili
    [J]. JOURNAL OF SENSORS, 2021, 2021