Use of SAR cross spectra for wind retrieval from ENVISAT ASAR wave mode data

被引:0
|
作者
Schneiderhan, T [1 ]
Schulz-Stellenfleth, J [1 ]
Lehner, S [1 ]
Horstmann, J [1 ]
Hoja, D [1 ]
机构
[1] DLR, German Aerosp Ctr, Marine Remote Sensing, D-82234 Wessling, Germany
关键词
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The new satellite ENVISAT, launched in march 2002, provides 10 x 5 km Synthetic Aperture Radar images (SAR imagettes) every 100 km along the track. This data set continues the data acquisition of the two European Remote Sensing satellites ERS-1 and ERS- 2, that have acquired similar SAR data for more than 10 years. In contrast to the ERS satellites, calibrated intensity images as well as look cross spectra are provided as standard products from ENVISAT. The new data, e.g. enable the extraction of information on wind fields on a global scale. In this study the problem of wind direction estimation is addressed. The idea is to use the spectral information contained in look cross spectra to estimate the propagation direction of the wind sea, which is strongly correlated with wind direction. The normalised radar cross section (NRCS) provided by calibrated imagettes then allows to estimate the wind speed using the CMOD4 model. A new classification method is applied to distinguish between swell and wind sea systems. The method is tested using a reprocessed data set of ENVISAT-like ERS-2 data, which are collocated with scatterometer data [SCAT]. The analysis comprises case studies of hurricanes. The data set includes several hurricanes in the Atlantic Ocean and single events will be investigated. In addition comparison with ECMWF model data will be presented. The benefit the extracted directional information on wind speed estimation is analyzed. In particular it is shown that the method leads to better results than obtained assuming a constant Wind direction.
引用
收藏
页码:1915 / 1917
页数:3
相关论文
共 50 条
  • [2] A semiempirical algorithm for SAR wave height retrieval and its validation using Envisat ASAR wave mode data
    Wang He
    Zhu Jianhua
    Yang Jingsong
    Shi Chaoying
    ACTA OCEANOLOGICA SINICA, 2012, 31 (03) : 59 - 66
  • [3] A semiempirical algorithm for SAR wave height retrieval and its validation using Envisat ASAR wave mode data
    He Wang
    Jianhua Zhu
    Jingsong Yang
    Chaoying Shi
    Acta Oceanologica Sinica, 2012, 31 : 59 - 66
  • [4] Using ERS-2 wave mode cross spectra to simulate ENVISAT ASAR ocean wave retrieval
    Schulz-Stellenfleth, J
    Lehner, S
    Horstmann, J
    IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 272 - 274
  • [5] Influence of Swell Wave on Wind Speed Retrieval Using ENVISAT ASAR Wave Mode Imagery
    Wang, Duo
    Wang, Xiaochen
    Jiao, Weili
    JOURNAL OF SENSORS, 2021, 2021
  • [6] Evaluation of an operational SAR wind field retrieval algorithm for ENVISAT ASAR
    Horstmann, J
    Koch, WG
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 44 - 47
  • [7] Ocean wind field retrieval using ENVISAT ASAR data
    Horstmann, J
    Koch, W
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 3102 - 3104
  • [8] Validation of wind vector retrieval from ENVISAT ASAR images
    He, YJ
    Zou, QP
    Perrie, W
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 3184 - 3187
  • [9] A new wind sea swell classification method for complex ENVISAT ASAR wave mode data
    Hoja, D
    Schulz-Stellenfleth, J
    Lehner, S
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 1921 - 1923
  • [10] Validation of ENVISAT ASAR Wave Mode Level 1 and 2 products using ERS SAR data
    Johnsen, H
    Engen, G
    Hogda, KA
    Chapron, B
    Desnos, YL
    IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 1498 - 1500