Quantitative Properties on the Steady States to a Schr?dinger-Poisson-Slater System

被引:0
|
作者
Chang-Lin XIANG [1 ]
机构
[1] University of Jyvaskyla,Department of Mathematics and Statistics
基金
芬兰科学院;
关键词
Schr?dinger-Poisson-Slater system; existence; uniqueness; asymptotic behavior;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this paper,we obtain the existence,uniqueness and asymptotic behavior of steady states to a class of Schr?dinger-Poisson-Slater System.
引用
收藏
页码:1845 / 1856
页数:12
相关论文
共 50 条
  • [41] A splitting Chebyshev collocation method for Schrödinger–Poisson system
    Hanquan Wang
    Zhenguo Liang
    Ronghua Liu
    Computational and Applied Mathematics, 2018, 37 : 5034 - 5057
  • [42] Infinitely Many Solutions for the Nonlinear Schrödinger–Poisson System
    Ke Jin
    Lushun Wang
    Journal of Dynamical and Control Systems, 2023, 29 : 1299 - 1322
  • [43] Ground state solutions for a class of Schrödinger–Poisson–Slater equation with Coulomb–Sobolev critical exponent
    Jingai Du
    Pengfei He
    Hongmin Suo
    Boundary Value Problems, 2025 (1)
  • [44] Existence and Nonlinear Stability of Stationary States for the Semi-Relativistic Schrödinger-Poisson System
    Walid Abou Salem
    Thomas Chen
    Vitali Vougalter
    Annales Henri Poincaré, 2014, 15 : 1171 - 1196
  • [45] On the Expansion of Resolvents and the Integrated Density of States for Poisson Distributed Schrödinger Operators
    Hasler, David
    Koberstein, Jannis
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (05)
  • [46] Existence and stability results for the planar Schrödinger-Poisson system
    Guoqing Zhang
    Wenyan Guo
    Weiguo Zhang
    Archiv der Mathematik, 2016, 107 : 561 - 568
  • [47] Quasilinear asymptotically periodic Schrödinger–Poisson system with subcritical growth
    Jing Zhang
    Lifeng Guo
    Miaomiao Yang
    Boundary Value Problems, 2020
  • [48] Semiclassical Limit of the Schrödinger–Poisson–Landau–Lifshitz–Gilbert System
    Lihui Chai
    Carlos J. García-Cervera
    Xu Yang
    Archive for Rational Mechanics and Analysis, 2018, 227 : 897 - 928
  • [49] Infinitely many dichotomous solutions for the Schr?dinger-Poisson system
    Yuke He
    Benniao Li
    Wei Long
    Science China(Mathematics), 2024, 67 (09) : 2049 - 2070
  • [50] A Schrödinger–Poisson System with the Critical Growth on the First Heisenberg Group
    Zhenyu Guo
    Qingying Shi
    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2023, 58 : 196 - 207