Terahertz Semiconductor Quantum Well Devices

被引:2
|
作者
Wchter M
Wasilewski Z R
Buchanan M
Aers G C
Spring Thorpe A J
Williams B S
机构
[1] Cambridge
[2] Canada
[3] Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics Massachusetts Institute of Technology
[4] Institute for Microstructural Sciences National Research Council
[5] Massachusetts 02139
[6] Ottawa K1A 0R6
[7] USA
关键词
terahertz; quantum well photodetector; quantum-cascade laser;
D O I
暂无
中图分类号
TN36 [半导体光电器件];
学科分类号
0803 ;
摘要
For eventually providing terahertz science with compact and convenient devices,terahertz (1~10THz) quantum-well photodetectors and quantum-cascade lasers are investigated.The design and projected detector performance are presented together with experimental results for several test devices,all working at photon energies below and around optical phonons.Background limited infrared performance (BLIP) operations are observed for all samples (three in total),designed for different wavelengths.BLIP temperatures of 17,13,and 12K are achieved for peak detection frequencies of 9.7THz(31μm),5.4THz(56μm),and 3.2THz(93μm),respectively.A set of THz quantum-cascade lasers with identical device parameters except for doping concentration is studied.The δ-doping density for each period varies from 3.2×1010 to 4.8×1010cm-2.We observe that the lasing threshold current density increases monotonically with doping concentration.Moreover,the measurements for devices with different cavity lengths provide evidence that the free carrier absorption causes the waveguide loss also to increase monotonically.Interestingly the observed maximum lasing temperature is best at a doping density of 3.6×1010cm-2.
引用
收藏
页码:627 / 634
页数:8
相关论文
共 50 条
  • [31] Terahertz quantum well infrared detectors
    Graf, Marcel
    Dupont, Emmanuel
    Luo, Hui
    Haffouz, Soufien
    Wasilewski, Zbig R.
    Thorpe, Anthony J. Spring
    Ban, Dayan
    Liu, H. C.
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2009, 52 (06) : 289 - 293
  • [32] Research on terahertz quantum well photodetector
    Zhang Zhen-Zhen
    Fu Zhang-Long
    Wang Chang
    Cao Jun-Cheng
    [J]. JOURNAL OF INFRARED AND MILLIMETER WAVES, 2022, 41 (01) : 80 - 86
  • [33] Terahertz quantum-well photodetector
    Liu, HC
    Song, CY
    SpringThorpe, AJ
    Cao, JC
    [J]. APPLIED PHYSICS LETTERS, 2004, 84 (20) : 4068 - 4070
  • [34] Terahertz quantum-well photodetectors
    Liu, HC
    Song, CY
    SpringThorpe, AJ
    Cao, JC
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2005, 47 (1-2) : 169 - 174
  • [35] Quantum control of the dynamics of a semiconductor quantum well
    Paspalakis, E.
    Tsaousidou, M.
    Kanaki, A.
    Terzis, A. F.
    [J]. PHYSICS OF SEMICONDUCTORS, PTS A AND B, 2007, 893 : 471 - +
  • [36] QUANTUM STATE DEPRESSION IN A SEMICONDUCTOR QUANTUM WELL
    Tavkhelidze, Avto
    Svanidze, Vasiko
    [J]. INTERNATIONAL JOURNAL OF NANOSCIENCE, 2008, 7 (06) : 333 - 338
  • [37] Terahertz/optical properties of semiconductor quantum wells
    Citrin, DS
    Maslov, AV
    [J]. THZ 2002: IEEE TENTH INTERNATIONAL CONFERENCE ON TERAHERTZ ELECTRONICS PROCEEDINGS, 2002, : 45 - 47
  • [38] Quantum theory of terahertz conductivity of semiconductor nanostructures
    Ostatnicky, T.
    Pushkarev, V.
    Nemec, H.
    Kuzel, P.
    [J]. PHYSICAL REVIEW B, 2018, 97 (08)
  • [39] Excitability in optically injected semiconductor lasers: Contrasting quantum-well- and quantum-dot-based devices
    Kelleher, B.
    Bonatto, C.
    Huyet, G.
    Hegarty, S. P.
    [J]. PHYSICAL REVIEW E, 2011, 83 (02):
  • [40] Quantum well thermoelectric devices
    Ghamaty, S.
    Elsner, N. B.
    [J]. Advances in Electronic Packaging 2005, Pts A-C, 2005, : 2129 - 2134