On Quantum Methods for Machine Learning Problems Part Ⅰ: Quantum Tools

被引:0
|
作者
Farid Ablayev [1 ]
Marat Ablayev [1 ]
Joshua Zhexue Huang [2 ]
Kamil Khadiev [1 ]
Nailya Salikhova [1 ]
Dingming Wu [2 ]
机构
[1] the Kazan Federal University
[2] the College of Computer Science & Software Engineering, Shenzhen University
基金
俄罗斯科学基金会;
关键词
quantum algorithm; quantum programming; machine learning;
D O I
暂无
中图分类号
O413 [量子论]; TP181 [自动推理、机器学习];
学科分类号
070201 ; 081104 ; 0812 ; 0835 ; 1405 ;
摘要
This is a review of quantum methods for machine learning problems that consists of two parts. The first part, "quantum tools", presents the fundamentals of qubits, quantum registers, and quantum states, introduces important quantum tools based on known quantum search algorithms and SWAP-test, and discusses the basic quantum procedures used for quantum search methods. The second part, "quantum classification algorithms",introduces several classification problems that can be accelerated by using quantum subroutines and discusses the quantum methods used for classification.
引用
收藏
页码:41 / 55
页数:15
相关论文
共 50 条
  • [41] A Quantum Approach to Pattern Recognition and Machine Learning. Part II
    Maria Luisa Dalla Chiara
    Roberto Giuntini
    Giuseppe Sergioli
    [J]. International Journal of Theoretical Physics, 63
  • [42] Machine Learning Tools for Engineering Problems
    Wang, Jing
    [J]. 2019 25TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND COMPUTING (ICAC), 2019, : 621 - 621
  • [43] Quantum geometric machine learning for quantum circuits and control
    Perrier, Elija
    Tao, Dacheng
    Ferrie, Chris
    [J]. NEW JOURNAL OF PHYSICS, 2020, 22 (10):
  • [44] Quantum state tomography using quantum machine learning
    Innan, Nouhaila
    Siddiqui, Owais Ishtiaq
    Arora, Shivang
    Ghosh, Tamojit
    Kocak, Yasemin Poyraz
    Paragas, Dominic
    Galib, Abdullah Al Omar
    Khan, Muhammad Al-Zafar
    Bennai, Mohamed
    [J]. QUANTUM MACHINE INTELLIGENCE, 2024, 6 (01)
  • [45] Generalization in Quantum Machine Learning: A Quantum Information Standpoint
    Banchi, Leonardo
    Pereira, Jason
    Pirandola, Stefano
    [J]. PRX QUANTUM, 2021, 2 (04):
  • [46] Enhanced Quantum Synchronization via Quantum Machine Learning
    Cardenas-Lopez, Francisco A.
    Sanz, Mikel
    Retamal, Juan Carlos
    Solano, Enrique
    [J]. ADVANCED QUANTUM TECHNOLOGIES, 2019, 2 (7-8)
  • [47] Blind Quantum Machine Learning with Quantum Bipartite Correlator
    Li, Changhao
    Li, Boning
    Amer, Omar
    Shaydulin, Ruslan
    Chakrabarti, Shouvanik
    Wang, Guoqing
    Xu, Haowei
    Tang, Hao
    Schoch, Isidor
    Kumar, Niraj
    Lim, Charles
    Li, Ju
    Cappellaro, Paola
    Pistoia, Marco
    [J]. PHYSICAL REVIEW LETTERS, 2024, 133 (12)
  • [48] Symmetric and antisymmetric kernels for machine learning problems in quantum physics and chemistry
    Klus, Stefan
    Gelss, Patrick
    Nueske, Feliks
    Noe, Frank
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (04):
  • [49] Is Quantum Advantage the Right Goal for Quantum Machine Learning?
    Schuld, Maria
    Killoran, Nathan
    [J]. PRX QUANTUM, 2022, 3 (03):
  • [50] Quantum neural network: Prospects for quantum machine learning
    Matsui, Nobuyuki
    [J]. Journal of Japan Institute of Electronics Packaging, 2020, 23 (02) : 139 - 144