Template-assisted synthesis of hierarchically porous Co3O4 with enhanced oxygen evolution activity

被引:0
|
作者
Lan Yao [1 ,2 ]
Hexiang Zhong [1 ]
Chengwei Deng [1 ,2 ]
Xianfeng Li [1 ,3 ]
Huamin Zhang [1 ,3 ]
机构
[1] Division of Energy Storage, Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences
[2] Graduate University of the Chinese Academy of Sciences
[3] Collaborative Innovation Center of Chemistry for Energy Materials(iChEM)
关键词
Oxygen evolution reaction; Co3O4; Non-precious metal catalysts; High activity; High stability;
D O I
暂无
中图分类号
O643.36 [催化剂]; TM911.4 [燃料电池];
学科分类号
摘要
Oxygen evolution reaction(OER) is one of the most important reactions in the energy storage devices such as metal–air batteries and unitized regenerative fuel cells(URFCs). However, the kinetically sluggishness of OER and the high prices as well as the scarcity of the most active precious metal electrocatalysts are the major bottleneck in these devices. Developing low-cost non-precious metal catalysts with high activity and stability for OER is highly desirable. A facile, in situ template method combining the dodecyl benzene sulfuric acid sodium(SDBS) assisted hydrothermal process with subsequent high-temperature treatment was developed to prepare porous CoOwith improved surface area and hierarchical porous structure as precious catalysts alternative for oxygen evolution reaction(OER). Due to the unique structure, the as-prepared catalyst shows higher electrocatalytic activity than CoOprepared by traditional thermal-decomposition method(noted as CoO-T) and commercial IrOcatalyst for OER in 0.1M KOH aqueous solution. Moreover, it displays improved stability than CoO-T. The results demonstrate a highly efficient, scalable, and low cost method for developing highly active and stable OER electrocatalysts in alkaline solutions.
引用
收藏
页码:153 / 157
页数:5
相关论文
共 50 条
  • [41] Ultrathin Co3O4 Nanomeshes for the Oxygen Evolution Reaction
    Li, Ying
    Li, Fu-Min
    Meng, Xin-Ying
    Li, Shu-Ni
    Zeng, Jing-Hui
    Chen, Yu
    ACS CATALYSIS, 2018, 8 (03): : 1913 - 1920
  • [42] Modulation of the Electronic Properties of Co3O4 through Bi Octahedral Doping for Enhanced Activity in the Oxygen Evolution Reaction
    Gorylewski, Damian
    Zasada, Filip
    Slowik, Grzegorz
    Lofek, Magdalena
    Grzybek, Gabriela
    Tyszczuk-Rotko, Katarzyna
    Kotarba, Andrzej
    Stelmachowski, Pawel
    ACS CATALYSIS, 2025, 15 (06): : 4746 - 4758
  • [43] Oxygen evolution on Co3O4 and Li-doped Co3O4 coated electrodes in an alkaline solution
    Bocca, C
    Cerisola, G
    Magnone, E
    Barbucci, A
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1999, 24 (08) : 699 - 707
  • [44] In Situ Synthesis of Ultrathin Co3O4 Nanoflakes Film on Ni Foam with Enhanced Performance for Electrochemical Oxygen Evolution
    Gao, Tianyi
    Zhang, Qing
    Ge, Yunshuang
    Sun, Xiaoyu
    Ma, Zhipeng
    Guo, Wenfeng
    Yu, Shengxue
    Fan, Yuqian
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (11):
  • [45] BCNO Nanosheet Supported Co3O4 Nanoparticles as an Enhanced Electrocatalyst for Oxygen Evolution Reaction
    Ji, Xuefeng
    Li, Yingxin
    Jia, Xiaobo
    Yang, Xiaojing
    Li, Lanlan
    Yao, Yingwu
    Cheng, Yahui
    Zhang, Xinghua
    Lu, Zunming
    Liu, Hui
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (06) : H177 - H181
  • [46] Exploring the Role of CoTe/Co3O4 Composite Catalyst for Enhanced Oxygen Evolution Reaction
    Rani, Pinki
    Ahmed, Imtiaz
    Dastider, Saptarshi Ghosh
    Biswas, Rathindranath
    Mondal, Krishnakanta
    Haldar, Krishna Kanta
    Patole, Shashikant P.
    Alegaonkar, Prashant S.
    ACS APPLIED ENGINEERING MATERIALS, 2023, 1 (12): : 3389 - 3402
  • [47] The role of synthesis vis-a-vis the oxygen vacancies of Co3O4 in the oxygen evolution reaction
    Roy, Saraswati
    Devaraj, Nayana
    Tarafder, Kartick
    Chakraborty, Chanchal
    Roy, Sounak
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (14) : 6539 - 6548
  • [48] Template-assisted synthesis of highly dispersed MoS2 nanosheets with enhanced activity for hydrogen evolution reaction
    Liu, Yan-Ru
    Li, Xiao
    Han, Guan-Qun
    Dong, Bin
    Hu, Wen-Hui
    Shang, Xiao
    Chai, Yong-Ming
    Liu, Yun-Qi
    Liu, Chen-Guang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (04) : 2054 - 2060
  • [49] Co3O4 Hollow Porous Nanospheres with Oxygen Vacancies for Enhanced Li-O2 Batteries
    Zhang, Yingmeng
    Feng, Lixia
    Zhan, Wentao
    Li, Shaojun
    Li, Yongliang
    Ren, Xiangzhong
    Zhang, Peixin
    Sun, Lingna
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (04) : 4014 - 4022
  • [50] Pick a Wick: A Simple, Ultrafast Combustion Synthesis of Co3O4 Dispersed Carbon for Enhanced Oxygen Evolution Kinetics
    Singh, Dheeraj Kumar
    Chakraborty, Soumita
    Saha, Arunava
    Sampath, Srinivasan
    Eswaramoorthy, Muthusamy
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (09): : 4448 - 4452