THE OPTIMAL GENERALIZED LOGARITHMIC MEAN BOUNDS FOR SEIFFERT’S MEAN

被引:0
|
作者
褚玉明
王淼坤
王根娣
机构
[1] Department of Mathematics, Hunan City University,Yiyang 413000, China
[2] College of Mathematics and Econometrics, Hunan University,Changsha 410082, China
[3] Department of Mathematics, Huzhou Teachers College,Huzhou 313000, China
基金
中国国家自然科学基金;
关键词
generalized logarithmic mean; Seiffert’s mean; power mean;
D O I
暂无
中图分类号
O156 [数论];
学科分类号
0701 ; 070101 ;
摘要
For p ∈ R, the generalized logarithmic mean L p (a, b) and Seiffert’s mean T (a, b) of two positive real numbers a and b are defined in (1.1) and (1.2) below respectively. In this paper, we find the greatest p and least q such that the double-inequality L p (a, b) < T (a, b) < L q (a, b) holds for all a, b > 0 and a ≠b.
引用
收藏
页码:1619 / 1626
页数:8
相关论文
共 50 条
  • [21] Optimal bounds of exponential type for arithmetic mean by Seiffert-like mean and centroidal mean
    Ling Zhu
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [22] Optimal bounds for logarithmic and identric means in terms of generalized centroidal mean
    Zhang, Tao
    Xia, Weifeng
    Chu, Yuming
    Wang, Gendi
    JOURNAL OF APPLIED ANALYSIS, 2013, 19 (01) : 141 - 152
  • [23] Optimal bounds for Neuman-Sandor mean in terms of the convex combination of the logarithmic and the second Seiffert means
    Chen, Jing-Jing
    Lei, Jian-Jun
    Long, Bo-Yong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [24] The Optimal Convex Combination Bounds of Arithmetic and Harmonic Means for the Seiffert's Mean
    Chu, Yu-Ming
    Qiu, Ye-Fang
    Wang, Miao-Kun
    Wang, Gen-Di
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
  • [25] The Optimal Convex Combination Bounds of Arithmetic and Harmonic Means for the Seiffert's Mean
    Yu-Ming Chu
    Ye-Fang Qiu
    Miao-Kun Wang
    Gen-Di Wang
    Journal of Inequalities and Applications, 2010
  • [26] Optimal bounds for two Seiffert-like means by arithmetic mean and harmonic mean
    Ling Zhu
    Branko Malešević
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [27] Optimal bounds for two Seiffert-like means by arithmetic mean and harmonic mean
    Zhu, Ling
    Malesevic, Branko
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (02)
  • [28] Best Possible Bounds for Yang Mean Using Generalized Logarithmic Mean
    Qian, Wei-Mao
    Chu, Yu-Ming
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [29] Sharp Bounds for Seiffert Mean in Terms of Contraharmonic Mean
    Chu, Yu-Ming
    Hou, Shou-Wei
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [30] OPTIMAL GENERALIZED LOGARITHMIC MEAN BOUNDS FOR THE GEOMETRIC COMBINATION OF ARITHMETIC AND HARMONIC MEANS
    Long, Bo-Yong
    Chu, Yu-Ming
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2011, 17 (02) : 85 - 96