KULKARNI'S QUESTION AND ERDS CONJECTURE

被引:0
|
作者
冯克勤
魏权龄
刘木兰
机构
[1] Academia Sinica
[2] Hefei
[3] Beijing
[4] People’s University of China
[5] Institute of Systems Science
[6] University of Science Technology of China
关键词
nonlinear integer programming; Egyptin fraction; diophantine equation;
D O I
暂无
中图分类号
学科分类号
摘要
R. Kulkarni has proposed the following question: For a given positive real number A and a natural number n, consider the numbers of the form
引用
收藏
页码:1835 / 1840
页数:6
相关论文
共 50 条
  • [21] An Improved Upper Bound for the Erdős–Szekeres Conjecture
    Hossein Nassajian Mojarrad
    Georgios Vlachos
    Discrete & Computational Geometry, 2016, 56 : 165 - 180
  • [22] Proof of the Erdős matching conjecture in a new range
    Peter Frankl
    Israel Journal of Mathematics, 2017, 222 : 421 - 430
  • [23] Forbidding Couples of Tournaments and the Erdös–Hajnal Conjecture
    Soukaina Zayat
    Salman Ghazal
    Graphs and Combinatorics, 2023, 39
  • [24] On an ErdŐs-Kac-Type Conjecture of Elliott
    Gorodetsky, Ofir
    Grimmelt, Lasse
    QUARTERLY JOURNAL OF MATHEMATICS, 2024, 75 (02): : 695 - 713
  • [25] A New Proof of the Erdős–Simonovits Conjecture on Walks
    Grigoriy Blekherman
    Annie Raymond
    Graphs and Combinatorics, 2023, 39
  • [26] The Threshold for the Erdős, Jacobson and Lehel Conjecture to Be True
    Jiong Sheng Li
    Jian Hua Yin
    Acta Mathematica Sinica, 2006, 22 : 1133 - 1138
  • [27] A short proof of Erdős’ conjecture for triple systems
    P. Frankl
    V. Rödl
    A. Ruciński
    Acta Mathematica Hungarica, 2017, 151 : 495 - 509
  • [28] On a question of Erdős on doubly stochastic matrices
    Bouthat, Ludovick
    Mashreghi, Javad
    Morneau-Guerin, Frederic
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (17): : 2823 - 2844
  • [29] A Question from a Famous Paper of Erdős
    Imre Bárány
    Edgardo Roldán-Pensado
    Discrete & Computational Geometry, 2013, 50 : 253 - 261
  • [30] Erdős–Gyárfás conjecture for some families of Cayley graphs
    Mohammad Hossein Ghaffari
    Zohreh Mostaghim
    Aequationes mathematicae, 2018, 92 : 1 - 6