Intercalation engineering of layered vanadyl phosphates for high performance zinc-ion batteries

被引:5
|
作者
Kunjie Zhu [1 ]
Zhiqin Sun [1 ]
Pei Liu [1 ]
Haixia Li [1 ]
Yijing Wang [1 ]
Kangzhe Cao [2 ]
Lifang Jiao [1 ]
机构
[1] Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (Re Cast), College of Chemistry, Nankai University
[2] College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University
基金
中央高校基本科研业务费专项资金资助; 中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TM912 [蓄电池]; TQ135.11 [];
学科分类号
摘要
Aqueous zinc-ion batteries(ZIBs) have attracted great attention as the candidates for large-scale energy storage system,recently,because of their low cost,environment-friendly,high safety,and high theoretical energy densities.Among the numerous cathode materials,layered structure vanadium based polyanionic compounds,such as VOPO,exhibit high specific capacity for Zn ion storage.However,the low Zn ion diffusion coefficient and limited interlayer spacing make the cathodes low reversible capacity and inferior cycling stability.Herein,K ions were pre-intercalated into the VOPOlayers via ions exchange adopting VOPO·2 HO as the precursor.When evaluated as the cathode for ZIBs,an excellent cycle stability of 400 cycles under a current density of 500 mA gwas achieved by the obtained KVOPOelectrode,verifying the positive effect of intercalation engineering.Furtherly,a solid-solution reaction Zn ion storage mechanism was confirmed.This study provides a new insight to explore high performance cathode materials for ZIBs.
引用
收藏
页码:239 / 245
页数:7
相关论文
共 50 条
  • [21] Tailoring layered transition metal compounds for high-performance aqueous zinc-ion batteries
    Zong, Quan
    Wu, Yuanzhe
    Liu, Chaofeng
    Wang, Qianqian
    Zhuang, Yanling
    Wang, Jiangying
    Tao, Daiwen
    Zhang, Qilong
    Cao, Guozhong
    ENERGY STORAGE MATERIALS, 2022, 52 : 250 - 283
  • [22] Strategies of structural and defect engineering for high-performance rechargeable aqueous zinc-ion batteries
    Du, Min
    Miao, Zhenyu
    Li, Houzhen
    Sang, Yuanhua
    Liu, Hong
    Wang, Shuhua
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (35) : 19245 - 19281
  • [23] Overpotential engineering enables dendrite-free zinc anode for high-performance zinc-ion batteries
    Li, Haohan
    Li, Wenpo
    Zhou, Pengcheng
    Chen, Xiaohong
    Shang, Bo
    Li, Qian
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 681 : 159 - 168
  • [24] Buried interface engineering towards stable zinc anodes for high-performance aqueous zinc-ion batteries
    Wen, Qing
    Fu, Hao
    Sun, Chao
    Cui, Rude
    Chen, Hezhang
    Ji, Ruihan
    Tang, Linbo
    Wu, Qing
    Wang, Jiexi
    Li, Lingjun
    Zhang, Jiafeng
    Zhang, Xiahui
    Zheng, Junchao
    SCIENCE BULLETIN, 2025, 70 (04) : 518 - 528
  • [25] Manipulating Polymer Configuration to Accelerate Cation Intercalation Kinetics for High-Performance Aqueous Zinc-Ion Batteries
    Wang, Xinlei
    Tang, Jian
    Tang, Weihua
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (27)
  • [26] A Superlattice-Stabilized Layered CuS Anode for High-Performance Aqueous Zinc-Ion Batteries
    Zhang, Jiaqian
    Lei, Qi
    Ren, Zhiguo
    Zhu, Xiaohui
    Li, Ji
    Li, Zhao
    Liu, Shilei
    Ding, Yiran
    Jiang, Zheng
    Li, Jiong
    Huang, Yaobo
    Li, Xiaolong
    Zhou, Xingtai
    Wang, Yong
    Zhu, Daming
    Zeng, Mengqi
    Fu, Lei
    ACS NANO, 2021, 15 (11) : 17748 - 17756
  • [27] Vanadium-Containing Layered Materials as High-Performance Cathodes for Aqueous Zinc-Ion Batteries
    Lewis, Courtney-Elyce M.
    Fernando, Joseph F. S.
    Siriwardena, Dumindu P.
    Firestein, Konstantin L.
    Zhang, Chao
    von Treifeldt, Joel E.
    Golberg, Dmitri V.
    ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (04)
  • [28] Unlocking Layered Double Hydroxide as a High-Performance Cathode Material for Aqueous Zinc-Ion Batteries
    Zhao, Yajun
    Zhang, Pengjun
    Liang, Jinrui
    Xia, Xiaoyu
    Ren, Longtao
    Song, Li
    Liu, Wen
    Sun, Xiaoming
    ADVANCED MATERIALS, 2022, 34 (37)
  • [29] The etching strategy of zinc anode to enable high performance zinc-ion batteries
    Xueqing Fu
    Gaopeng Li
    Xinlu Wang
    Jinxian Wang
    Wensheng Yu
    Xiangting Dong
    Dongtao Liu
    Journal of Energy Chemistry, 2024, 88 (01) : 125 - 143
  • [30] The etching strategy of zinc anode to enable high performance zinc-ion batteries
    Fu, Xueqing
    Li, Gaopeng
    Wang, Xinlu
    Wang, Jinxian
    Yu, Wensheng
    Dong, Xiangting
    Liu, Dongtao
    JOURNAL OF ENERGY CHEMISTRY, 2024, 88 : 125 - 143