Valuing Credit Default Swap under a double exponential jump diffusion model

被引:0
|
作者
YANG Rui-cheng [1 ]
PANG Mao-xiu [2 ]
JIN Zhuang [1 ]
机构
[1] Finance School,Inner Mongolia University of Finance and Economics
[2] School of Mathematics and Information,Ludong University
基金
中国国家自然科学基金;
关键词
Credit Default Swap; Brownian motion; double exponential jump diffusion model;
D O I
暂无
中图分类号
F830.9 [金融市场]; F224 [经济数学方法];
学科分类号
020204 ; 0701 ; 070104 ; 1201 ;
摘要
This paper discusses the valuation of the Credit Default Swap based on a jump market,in which the asset price of a firm follows a double exponential jump diffusion process,the value of the debt is driven by a geometric Brownian motion,and the default barrier follows a continuous stochastic process. Using the Gaver-Stehfest algorithm and the non-arbitrage asset pricing theory,we give the default probability of the first passage time,and more,derive the price of the Credit Default Swap.
引用
收藏
页码:36 / 43
页数:8
相关论文
共 50 条
  • [31] Valuing basket-spread options with default risk under Hawkes jump-diffusion processes
    Li, Zelei
    Tang, Dan
    Wang, Xingchun
    [J]. EUROPEAN JOURNAL OF FINANCE, 2023, 29 (12): : 1406 - 1431
  • [32] A jump model for credit default swaps with hierarchical clustering
    Zeitsch, Peter J.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 524 : 737 - 775
  • [33] The Pricing of Total Return Swap Under Default Contagion Models with Jump-Diffusion Interest Rate Risk
    Wang, Anjiao
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (01): : 361 - 373
  • [34] The Pricing of Total Return Swap Under Default Contagion Models with Jump-Diffusion Interest Rate Risk
    Anjiao Wang
    [J]. Indian Journal of Pure and Applied Mathematics, 2020, 51 : 361 - 373
  • [35] Pricing discrete path-dependent options under a double exponential jump-diffusion model
    Fuh, Cheng-Der
    Luo, Sheng-Feng
    Yen, Ju-Fang
    [J]. JOURNAL OF BANKING & FINANCE, 2013, 37 (08) : 2702 - 2713
  • [36] Real options under a double exponential jump-diffusion model with regime switching and partial information
    Luo, Pengfei
    Xiong, Jie
    Yang, Jinqiang
    Yang, Zhaojun
    [J]. QUANTITATIVE FINANCE, 2019, 19 (06) : 1061 - 1073
  • [37] Option pricing under a double-exponential jump-diffusion model with varying severity of jumps
    Lin, Xenos Chang-Shuo
    Miao, Daniel Wei-Chung
    Lee, Ying-, I
    Zheng, Yu
    [J]. PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2024, 38 (01) : 39 - 64
  • [38] Wavelet-Galerkin Method for Option Pricing under a Double Exponential Jump-Diffusion Model
    Cerna, Dana
    [J]. 2018 5TH INTERNATIONAL CONFERENCE ON MATHEMATICS AND COMPUTERS IN SCIENCES AND INDUSTRY (MCSI 2018), 2018, : 122 - 127
  • [40] A Research on Credit Default Swap Pricing Based on the Modified KMV Model
    Xu Jiemin
    Shao Peng
    Liu Yanping
    [J]. PROCEEDINGS OF THE 4TH (2012) INTERNATIONAL CONFERENCE ON FINANCIAL RISK AND CORPORATE FINANCE MANAGEMENT, VOLS I AND II, 2012, : 14 - +