Equivalent boundedness of Marcinkiewicz integrals on non-homogeneous metric measure spaces

被引:0
|
作者
LIN HaiBo [1 ]
YANG DaChun [2 ]
机构
[1] College of Science,China Agricultural University
[2] School of Mathematical Sciences,Beijing Normal University,Laboratory of Mathematics and Complex Systems,Ministry of Education
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
upper doubling; geometrically doubling; Marcinkiewicz integral; atomic Hardy space; RBMO(μ);
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
Let(X,d,μ)be a metric measure space satisfying the upper doubling condition and the geometrically doubling condition in the sense of Hyto¨nen.We prove that the L p(μ)-boundedness with p∈(1,∞)of the Marcinkiewicz integral is equivalent to either of its boundedness from L1(μ)into L1,∞(μ)or from the atomic Hardy space H1(μ)into L1(μ).Moreover,we show that,if the Marcinkiewicz integral is bounded from H1(μ)into L1(μ),then it is also bounded from L∞(μ)into the space RBLO(μ)(the regularized BLO),which is a proper subset of RBMO(μ)(the regularized BMO)and,conversely,if the Marcinkiewicz integral is bounded from L∞b(μ)(the set of all L∞(μ)functions with bounded support)into the space RBMO(μ),then it is also bounded from the finite atomic Hardy space H1,∞fin(μ)into L1(μ).These results essentially improve the known results even for non-doubling measures.
引用
收藏
页码:123 / 144
页数:22
相关论文
共 50 条
  • [31] Boundedness of vector-valued Calderón-Zygmund operators on non-homogeneous metric measure spaces
    Yaoyao Han
    [J]. Journal of Pseudo-Differential Operators and Applications, 2022, 13
  • [32] Hardy spaces Hp over non-homogeneous metric measure spaces and their applications
    Xing Fu
    HaiBo Lin
    DaChun Yang
    DongYong Yang
    [J]. Science China Mathematics, 2015, 58 : 309 - 388
  • [33] Marcinkiewicz Commutators with Lipschitz Functions in Non-homogeneous Spaces
    Zhou, Jiang
    Ma, Bolin
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2012, 55 (03): : 646 - 662
  • [34] Multilinear fractional integral operators on non-homogeneous metric measure spaces
    Huajun Gong
    Rulong Xie
    Chen Xu
    [J]. Journal of Inequalities and Applications, 2016
  • [35] Multilinear fractional integral operators on non-homogeneous metric measure spaces
    Gong, Huajun
    Xie, Rulong
    Xu, Chen
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [36] Endpoint Estimates for Generalized Multilinear Fractional Integrals on the Non-homogeneous Metric Spaces
    Jiecheng CHEN
    Xiaoli CHEN
    Fangting JIN
    [J]. Chinese Annals of Mathematics,Series B, 2018, (04) : 721 - 738
  • [37] Endpoint Estimates for Generalized Multilinear Fractional Integrals on the Non-homogeneous Metric Spaces
    Chen, Jiecheng
    Chen, Xiaoli
    Jin, Fangting
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2018, 39 (04) : 721 - 738
  • [38] AN INTERPOLATION THEOREM FOR SUBLINEAR OPERATORS ON NON-HOMOGENEOUS METRIC MEASURE SPACES
    Lin, Haibo
    Yang, Dongyong
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2012, 6 (02) : 168 - 179
  • [39] Endpoint Estimates for Generalized Multilinear Fractional Integrals on the Non-homogeneous Metric Spaces
    Jiecheng Chen
    Xiaoli Chen
    Fangting Jin
    [J]. Chinese Annals of Mathematics, Series B, 2018, 39 : 721 - 738
  • [40] Boundedness of Calderon-Zygmund Operators on Non-homogeneous Metric Measure Spaces (vol 64, pg 892, 2012)
    Hytoenen, Tuomas
    Liu, Suile
    Yang, Dachun
    Yang, Dongyong
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2013, 65 (01): : 2 - 2