Homoclinic Bifurcation of Orbit Flip with Resonant Principal Eigenvalues

被引:0
|
作者
Tian Si ZHANG [1 ]
De Ming ZHU [1 ]
机构
[1] Department of Mathematics,East China Normal University
关键词
Orbit flip; Homoclinic orbit; Periodic orbit; Resonance; Principal eigenvalues;
D O I
暂无
中图分类号
O177.91 [非线性泛函分析];
学科分类号
070104 ;
摘要
Codimension-3 bifurcations of an orbit-flip homoclinic orbit with resonant principal eigen-values are studied for a four-dimensional system.The existence,number,co-existence and non-coexistence of 1-homoclinic orbit,1-periodic orbit,2n-homoclinic orbit and 2n-periodic orbit are ob-tained.The bifurcation surfaces and existence regions are also given.
引用
收藏
页码:855 / 864
页数:10
相关论文
共 50 条
  • [1] Homoclinic bifurcation of orbit flip with resonant principal eigenvalues
    Zhang, TS
    Zhu, D
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (03) : 855 - 864
  • [2] Homoclinic Bifurcation of Orbit Flip with Resonant Principal Eigenvalues
    Tian Si Zhang
    De Ming Zhu
    [J]. Acta Mathematica Sinica, 2006, 22 : 855 - 864
  • [3] Codimension 3 homoclinic bifurcation of orbit flip with resonant eigenvalues corresponding to the tangent directions
    Zhang, TS
    Zhu, DM
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (12): : 4161 - 4175
  • [4] Bifurcations of double homoclinic flip orbits with resonant eigenvalues
    张天四
    朱德明
    [J]. Applied Mathematics and Mechanics(English Edition), 2007, (11) : 1517 - 1526
  • [5] Bifurcations of double homoclinic flip orbits with resonant eigenvalues
    Tian-si Zhang
    De-ming Zhu
    [J]. Applied Mathematics and Mechanics, 2007, 28 : 1517 - 1526
  • [6] Bifurcations of double homoclinic flip orbits with resonant eigenvalues
    Zhang Tian-si
    Zhu De-ming
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2007, 28 (11) : 1517 - 1526
  • [7] Resonant Homoclinic Flips Bifurcation in Principal Eigendirections
    Zhang, Tiansi
    Huang, Xiaoxin
    Zhu, Deming
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [8] Bifurcation Complexity from Orbit-Flip Homoclinic Orbit of Weak Type
    Lu, Qiuying
    Naudot, Vincent
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (04):
  • [9] Codimension 3 bifurcation from orbit-flip homoclinic orbit of weak type
    Lu, Qiuying
    Deng, Guifeng
    Luo, Hua
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2015, (71)
  • [10] Resonant homoclinic flip bifurcations
    Homburg A.J.
    Krauskopf B.
    [J]. Journal of Dynamics and Differential Equations, 2000, 12 (4) : 807 - 850