p-ADIC CONTINUED FRACTIONS (Ⅰ)

被引:0
|
作者
王连祥
机构
[1] Institute of Mathematics
[2] Beijing
[3] Academia Sinica
关键词
Th; p-ADIC CONTINUED FRACTIONS;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a new kind of p-adic continued fractions is introduced. We obtain some criteria of the irrationality, the transcendence and algebraic independence for p-adic numbers.
引用
收藏
页码:1009 / 1017
页数:9
相关论文
共 50 条
  • [31] Correction: Convergence conditions for p-adic continued fractions
    Nadir Murru
    Giuliano Romeo
    Giordano Santilli
    Research in Number Theory, 2024, 10
  • [32] ON THE FINITENESS OF p-ADIC CONTINUED FRACTIONS FOR NUMBER FIELDS
    Capuano, Laura
    Murru, Nadir
    Terracini, Lea
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2022, 150 (04): : 743 - 772
  • [33] A CHARACTERIZATION OF RATIONAL NUMBERS BY P-ADIC RUBAN CONTINUED FRACTIONS
    LAOHAKOSOL, V
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1985, 39 (DEC): : 300 - 305
  • [34] Transcendence of Thue-Morse p-Adic Continued Fractions
    Belhadef, Rafik
    Esbelin, Henri-Alex
    Zerzaihi, Tahar
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 1429 - 1434
  • [35] On the Quasi-Periodic p-Adic Ruban Continued Fractions
    Ammous, Basma
    Ben Mahmoud, Nour
    Hbaib, Mohamed
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2022, 72 (04) : 1157 - 1166
  • [36] On the quasi-palindromic p-adic Ruban continued fractions
    B. Ammous
    L. Dammak
    Indian Journal of Pure and Applied Mathematics, 2023, 54 : 725 - 733
  • [37] On the quasi-palindromic p-adic Ruban continued fractions
    Ammous, B.
    Dammak, L.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (03): : 725 - 733
  • [38] On the quasi-periodic p-adic Ruban continued fractions
    Basma Ammous
    Nour Ben Mahmoud
    Mohamed Hbaib
    Czechoslovak Mathematical Journal, 2022, 72 : 1157 - 1166
  • [39] Periodic Representations and Approximations of p-adic Numbers Via Continued Fractions
    Barbero, Stefano
    Cerruti, Umberto
    Murru, Nadir
    EXPERIMENTAL MATHEMATICS, 2024, 33 (01) : 100 - 110
  • [40] P-ADIC CONTINUED FRACTIONS - PERIODS WITH EVEN-NUMBERED LENGTH
    BEDOCCHI, E
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1993, 7A (02): : 259 - 265