Machine Learning Driven Latency Optimization for Internet of Things Applications in Edge Computing

被引:1
|
作者
Uchechukwu AWADA [1 ]
ZHANG Jiankang [2 ]
CHEN Sheng [3 ,4 ]
LI Shuangzhi [1 ]
YANG Shouyi [1 ]
机构
[1] Zhengzhou University
[2] Bournemouth University
[3] University of Southampton
[4] Ocean University of China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP391.44 []; TN929.5 [移动通信]; TP181 [自动推理、机器学习];
学科分类号
080402 ; 080904 ; 0810 ; 081001 ; 0811 ; 081101 ; 081104 ; 0812 ; 0835 ; 1405 ;
摘要
Emerging Internet of Things(IoT) applications require faster execution time and response time to achieve optimal performance.However,most IoT devices have limited or no computing capability to achieve such stringent application requirements.To this end,computation offloading in edge computing has been used for IoT systems to achieve the desired performance.Nevertheless,randomly offloading applications to any available edge without considering their resource demands,inter-application dependencies and edge resource availability may eventually result in execution delay and performance degradation.We introduce Edge-IoT,a machine learning-enabled orchestration framework in this paper,which utilizes the states of edge resources and application resource requirements to facilitate a resource-aware offloading scheme for minimizing the average latency.We further propose a variant bin-packing optimization model that co-locates applications firmly on edge resources to fully utilize available resources.Extensive experiments show the effectiveness and resource efficiency of the proposed approach.
引用
收藏
页码:40 / 52
页数:13
相关论文
共 50 条
  • [21] Guest Editorial: Alternative Computing and Machine Learning for Internet of Things
    Firouzi, Farshad
    Farahani, Bahar
    Kahng, Andrew B.
    Rabaey, Jan M.
    Balac, Natasha
    [J]. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2017, 25 (10) : 2685 - 2687
  • [22] The applications of machine learning techniques in medical data processing based on distributed computing and the Internet of Things
    Aminizadeh, Sarina
    Heidari, Arash
    Toumaj, Shiva
    Darbandi, Mehdi
    Navimipour, Nima Jafari
    Rezaei, Mahsa
    Talebi, Samira
    Azad, Poupak
    Unal, Mehmet
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 241
  • [23] A Survey on the Edge Computing for the Internet of Things
    Yu, Wei
    Liang, Fan
    He, Xiaofei
    Hatcher, William Grant
    Lu, Chao
    Lin, Jie
    Yang, Xinyu
    [J]. IEEE ACCESS, 2018, 6 : 6900 - 6919
  • [24] Edge and Fog Computing for the Internet of Things
    Pozzebon, Alessandro
    [J]. FUTURE INTERNET, 2024, 16 (03)
  • [25] An edge computing architecture in the Internet of Things
    Martin, Cristian
    Diaz, Manuel
    Rubio, Bartolome
    [J]. 2018 IEEE 21ST INTERNATIONAL SYMPOSIUM ON REAL-TIME DISTRIBUTED COMPUTING (ISORC 2018), 2018, : 99 - 102
  • [26] Survey On Applications Of Internet Of Things Using Machine Learning
    Majumdar, Namrata
    Shukla, Shipra
    Bhatnagar, Anisha
    [J]. 2019 9TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2019), 2019, : 562 - 566
  • [27] The Role of Edge Computing in Internet of Things
    Hassan, Najmul
    Gillani, Saira
    Ahmed, Ejaz
    Yaqoob, Ibrar
    Imran, Muhammad
    [J]. IEEE COMMUNICATIONS MAGAZINE, 2018, 56 (11) : 110 - 115
  • [28] Edge Computing Enabling the Internet of Things
    Salman, Ola
    Elhajj, Imad
    Kayssi, Ayman
    Chehab, Ali
    [J]. 2015 IEEE 2ND WORLD FORUM ON INTERNET OF THINGS (WF-IOT), 2015, : 603 - 608
  • [29] Editorial: Edge Computing for the Internet of Things
    Chi, Hao Ran
    [J]. JOURNAL OF SENSOR AND ACTUATOR NETWORKS, 2023, 12 (01)
  • [30] Artificial Intelligence Enabled Distributed Edge Computing for Internet of Things Applications
    Fragkos, Georgios
    Tsiropoulou, Eirini Eleni
    Papavassiliou, Symeon
    [J]. 16TH ANNUAL INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING IN SENSOR SYSTEMS (DCOSS 2020), 2020, : 450 - 457