Machine Learning Driven Latency Optimization for Internet of Things Applications in Edge Computing

被引:1
|
作者
Uchechukwu AWADA [1 ]
ZHANG Jiankang [2 ]
CHEN Sheng [3 ,4 ]
LI Shuangzhi [1 ]
YANG Shouyi [1 ]
机构
[1] Zhengzhou University
[2] Bournemouth University
[3] University of Southampton
[4] Ocean University of China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP391.44 []; TN929.5 [移动通信]; TP181 [自动推理、机器学习];
学科分类号
080402 ; 080904 ; 0810 ; 081001 ; 0811 ; 081101 ; 081104 ; 0812 ; 0835 ; 1405 ;
摘要
Emerging Internet of Things(IoT) applications require faster execution time and response time to achieve optimal performance.However,most IoT devices have limited or no computing capability to achieve such stringent application requirements.To this end,computation offloading in edge computing has been used for IoT systems to achieve the desired performance.Nevertheless,randomly offloading applications to any available edge without considering their resource demands,inter-application dependencies and edge resource availability may eventually result in execution delay and performance degradation.We introduce Edge-IoT,a machine learning-enabled orchestration framework in this paper,which utilizes the states of edge resources and application resource requirements to facilitate a resource-aware offloading scheme for minimizing the average latency.We further propose a variant bin-packing optimization model that co-locates applications firmly on edge resources to fully utilize available resources.Extensive experiments show the effectiveness and resource efficiency of the proposed approach.
引用
收藏
页码:40 / 52
页数:13
相关论文
共 50 条
  • [1] Joint Optimization of Energy Consumption and Latency in Mobile Edge Computing for Internet of Things
    Cui, Laizhong
    Xu, Chong
    Yang, Shu
    Huang, Joshua Zhexue
    Li, Jianqiang
    Wang, Xizhao
    Ming, Zhong
    Lu, Nan
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (03): : 4791 - 4803
  • [2] Machine Learning Driven Latency Optimization for Application-aware Edge Computing-based IoTs
    Zhang, Liang
    Jabbari, Bijan
    [J]. IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 183 - 188
  • [3] Internet of Intelligent Things: A convergence of embedded systems, edge computing and machine learning
    Oliveira, Franklin
    Costa, Daniel G.
    Assis, Flavio
    Silva, Ivanovitch
    [J]. INTERNET OF THINGS, 2024, 26
  • [4] Machine learning algorithms towards merging of mobile edge computing and Internet of Things
    Manogaran, Gunasekaran
    Chilamkurti, Naveen
    Hsu, Ching-Hsien
    [J]. COMPUTER NETWORKS, 2019, 161 : 249 - 250
  • [5] Edge-computing-driven Internet of Things: A Survey
    Kong, Linghe
    Tan, Jinlin
    Huang, Junqin
    Chen, Guihai
    Wang, Shuaitian
    Jin, Xi
    Zeng, Peng
    Khan, Muhammad
    Das, Sajal K.
    [J]. ACM COMPUTING SURVEYS, 2023, 55 (08)
  • [6] Future Edge Cloud and Edge Computing for Internet of Things Applications
    Pan, Jianli
    McElhannon, James
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2018, 5 (01): : 439 - 449
  • [7] Learning IoT in Edge: Deep Learning for the Internet of Things with Edge Computing
    Li, He
    Ota, Kaoru
    Dong, Mianxiong
    [J]. IEEE NETWORK, 2018, 32 (01): : 96 - 101
  • [8] Internet of things delay application driven measurement and optimization technology in edge computing environment
    Gong, Qingzhi
    Wu, Guowei
    Liu, Zhaoxia
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 37 (05) : 5849 - 5856
  • [9] In Search of the Future Technologies: Fusion of Machine Learning, Fog and Edge Computing in the Internet of Things
    Naveen, Soumyalatha
    Kounte, Manjunath R.
    [J]. PROCEEDING OF THE INTERNATIONAL CONFERENCE ON COMPUTER NETWORKS, BIG DATA AND IOT (ICCBI-2018), 2020, 31 : 278 - 285
  • [10] Edge-adaptable serverless acceleration for machine learning Internet of Things applications
    Zhang, Michael
    Krintz, Chandra
    Wolski, Rich
    [J]. SOFTWARE-PRACTICE & EXPERIENCE, 2021, 51 (09): : 1852 - 1867