Fast MR Spectroscopic Imaging Technologies and Data Reconstruction Methods

被引:0
|
作者
HUANG Min
机构
关键词
MRSI; Rata reconstruction; EPSI; Spiral SI; SENSE-SI;
D O I
暂无
中图分类号
R445.2 [核磁共振成像];
学科分类号
100207 ;
摘要
MRSI plays a more and more important role in clinical application. In this paper,we compare several fast MRSI technologies and data reconstruction methods. For the conventional phase encoding MRSI,the data reconstruction using FFT is simple. But the data acquisition is very time consuming and thus prohibitive in clinical settings. Up to now,the MRSI technologies based on echo-planar, spiral trajectories and sensitivity encoding are the fastest in data acquisition,but their data reconstruction is complex. EPSI reconstruction uses shift of odd and even echoes. Spiral SI uses gridding FFT. SENSE-SI,a new approach to reducing the acquisition time,uses the distinct spatial sensitivities of the individual coil elements to recover the missing encoding information. These improvements in data acquisition and image reconstruction provide a potential value of metabolic imaging as a clinical tool.
引用
收藏
页码:101 / 109
页数:9
相关论文
共 50 条
  • [21] The use of multivariate MR imaging intensities versus metabolic data from MR spectroscopic imaging for brain tumour classification
    Devos, A
    Simonetti, AW
    van der Graaf, M
    Lukas, L
    Suykens, JAK
    Vanhamme, L
    Buydens, LMC
    Heerschap, A
    Van Huffel, S
    [J]. JOURNAL OF MAGNETIC RESONANCE, 2005, 173 (02) : 218 - 228
  • [22] Fast water concentration mapping to normalize 1H MR spectroscopic imaging
    Lecocq, Angele
    Le Fur, Yann
    Amadon, Alexis
    Vignaud, Alexandre
    Cozzone, Patrick J.
    Guye, Maxime
    Ranjeva, Jean-Philippe
    [J]. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2015, 28 (01) : 87 - 100
  • [23] Fast water concentration mapping to normalize 1H MR spectroscopic imaging
    Angèle Lecocq
    Yann Le Fur
    Alexis Amadon
    Alexandre Vignaud
    Patrick J. Cozzone
    Maxime Guye
    Jean-Philippe Ranjeva
    [J]. Magnetic Resonance Materials in Physics, Biology and Medicine, 2015, 28 : 87 - 100
  • [24] Motion detection from the raw data in projection reconstruction mr imaging
    van de Walle, R
    Lemahieu, I
    [J]. PROCEEDINGS OF THE 18TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOL 18, PTS 1-5, 1997, 18 : 702 - 704
  • [25] Structured errors in reconstruction methods for Non-Cartesian MR data
    Gibiino, Fabio
    Positano, Vincenzo
    Wiesinger, Florian
    Giovannetti, Giulio
    Landini, Luigi
    Santarelli, Maria Filomena
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2013, 43 (12) : 2256 - 2262
  • [26] Methods and Considerations for Dynamic Analysis of Functional MR Imaging Data
    Chen, Jingyuan E.
    Rubinov, Mikail
    Chang, Catie
    [J]. NEUROIMAGING CLINICS OF NORTH AMERICA, 2017, 27 (04) : 547 - +
  • [27] Hypothalamic hamartoma: MR imaging and MR spectroscopic features
    Seith, Ashu
    Kandpal, Harsh
    Khadoawat, Raiesh
    [J]. SINGAPORE MEDICAL JOURNAL, 2008, 49 (04) : 366 - 367
  • [28] Fast MR imaging of the lung
    Hatabu, H
    [J]. ULTRAFAST MAGNETIC RESONANCE IMAGING IN MEDICINE, 1999, 1192 : 331 - 341
  • [29] Fast(ER) MR imaging
    Keller, PJ
    [J]. NEUROIMAGING CLINICS OF NORTH AMERICA, 1999, 9 (02) : 243 - 252
  • [30] APPROACHES TO FAST MR IMAGING
    LUFKIN, R
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 1989, 13 (02) : 145 - 151