Local generalized empirical estimation of regression

被引:0
|
作者
Doksum Kjell
机构
[1] USA
[2] Department of Statistics
[3] University of California at Berkeley
[4] CA 94720
关键词
boundary adaptive; Diracδ-function; local polynomial; local empirical; Nadaraya-Watson estima-tor;
D O I
暂无
中图分类号
O211.6 [随机过程];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let f(x) be the density of a design variable X and m(x) = E[Y\X = x] the regression function. Then m(x) - G(x)/f(x), where G(x) = m(x)f(x). The Dirac δ-function is used to define a generalized empirical function Gn (x) for G(x) whose expectation equals G(x). This generalized empirical function exists only in the space of Schwartz distributions, so we introduce a local polynomial of order p approximation to Gn(.) which provides estimators of the function G(x) and its derivatives. The density f(x) can be estimated in a similar manner. The resulting local generalized empirical estimator (LGE) of m(x) is exactly the Nadaraya-Watson estimator at interior points when p = 1, but on the boundary the estimator automatically corrects the boundary effect. Asymptotic normality of the estimator is established. Asymptotic expressions for the mean squared errors are obtained and used in bandwidth selection. Boundary behavior of the estimators is investigated in details. We use Monte Carlo simulations to show that the
引用
收藏
页码:114 / 127
页数:14
相关论文
共 50 条
  • [31] On the estimation error in binned local linear regression
    Hoti, F
    Holmström, L
    JOURNAL OF NONPARAMETRIC STATISTICS, 2003, 15 (4-5) : 625 - 642
  • [33] A way of using local time for regression estimation
    Serot, I
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (07): : 637 - 640
  • [34] Local adaptive smoothing in kernel regression estimation
    Zheng, Qi
    Kulasekera, K. B.
    Gallagher, Colin
    STATISTICS & PROBABILITY LETTERS, 2010, 80 (7-8) : 540 - 547
  • [35] Local polynomial regression estimation with correlated errors
    Francisco-Fernández, M
    Vilar-Fernández, JM
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2001, 30 (07) : 1271 - 1293
  • [36] Local linear estimation for the censored functional regression
    Almulhim, Fatimah A.
    Merouan, Torkia
    Alamari, Mohammed B.
    Mechab, Boubaker
    AIMS MATHEMATICS, 2024, 9 (06): : 13980 - 13997
  • [37] Conditional quantile estimation by local logistic regression
    Lee, Young Kyung
    Lee, Eun Ryung
    Park, Byeong U.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2006, 18 (4-6) : 357 - 373
  • [38] Efficient estimation in local parametric regression analysis
    Falk, M
    Marohn, F
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2000, 29 (11) : 2363 - 2389
  • [39] GENERALIZED REGRESSION NEURAL NETWORK FOR SOFTWARE DEFECT ESTIMATION
    Rao, Sankara
    Kumar, ReddiKiran
    IIOAB JOURNAL, 2016, 7 (09) : 340 - 356
  • [40] Regularized Bayesian Estimation of Generalized Threshold Regression Models
    Greb, Friederike
    Krivobokova, Tatyana
    Munk, Axel
    von Cramon-Taubadel, Stephan
    BAYESIAN ANALYSIS, 2014, 9 (01): : 171 - 196