Classification of the mining land cover based on density segmentation

被引:0
|
作者
孙茜茜 [1 ]
王萍 [1 ]
机构
[1] College of Geomatics,Shandong University of Science and Technology
关键词
density segmentation; processing of small polygons; tasseled cap; accuracy assessment;
D O I
暂无
中图分类号
TP751 [图像处理方法]; F301 [土地经济学];
学科分类号
081002 ; 082802 ; 1204 ; 120405 ;
摘要
The Datun mining area is the test area in this paper,and the purpose is to obtain the mining land cover classification map in 2003.The data source used in this paper is the Landsat enhanced thematic mapper plus(ETM)remote sensing data.By obtaining the normalized difference vegetation index(NDVI)of the study area,the land cover classification information is extracted using the density segmentation method.Because the results cannot distinguish the construction land and wetland,this paper obtains the humidity information of multi-spectral data through the tasseled cap transformation.From the density segmentation image of humidity information,the construction and wetland types can be clearly distinguished.Finally,combining the two classification maps,the visual interpretation using Landsat ETM fusion image with 15-m resolution helps to get the final classification results.After classification accuracy assessment,the overall accuracy calculated from the classification confusion matrix is 86%.This result can be applied in actual project.
引用
收藏
页码:336 / 340
页数:5
相关论文
共 50 条
  • [31] Object-based land cover classification using high-posting-density LiDAR data
    Im, Jungho
    Jensen, John R.
    Hodgson, Michael E.
    GISCIENCE & REMOTE SENSING, 2008, 45 (02) : 209 - 228
  • [32] LAND COVER CLASSIFICATION IN ALBANIA
    Nikolli, Pal
    100 YEARS ISPRS ADVANCING REMOTE SENSING SCIENCE, PT 2, 2010, 38 : 412 - 416
  • [33] Land Cover Classification Using CNN and Semantic Segmentation: A Case of Study in Antioquia, Colombia
    González-Vélez, Juan C.
    Martinez-Vargas, Juan D.
    Torres-Madronero, Maria C.
    Communications in Computer and Information Science, 2022, 1532 CCIS : 306 - 317
  • [34] Improving the Efficiency of Land Cover Classification by Combining Segmentation, Hierarchical Clustering, and Active Learning
    Wuttke, Sebastian
    Middelmann, Wolfgang
    Stilla, Uwe
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (11) : 4016 - 4031
  • [35] Land Cover Classification Using CNN and Semantic Segmentation: A Case of Study in Antioquia, Colombia
    Gonzalez-Velez, Juan C.
    Martinez-Vargas, Juan D.
    Torres-Madronero, Maria C.
    SMART TECHNOLOGIES, SYSTEMS AND APPLICATIONS, SMARTTECH-IC 2021, 2022, 1532 : 306 - 317
  • [36] THE USE OF LAND COVER CHANGE LIKELIHOOD FOR IMPROVING LAND COVER CLASSIFICATION
    Reis, Mariane S.
    Sant'Anna, Sidnei J. S.
    Dutra, Luciano V.
    Escada, Maria Isabel S.
    Pantaleao, Eliana
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 3222 - 3225
  • [37] Tracking the Land Use/Land Cover Change in an Area with Underground Mining and Reforestation via Continuous Landsat Classification
    Mi, Jiaxin
    Yang, Yongjun
    Zhang, Shaoliang
    An, Shi
    Hou, Huping
    Hua, Yifei
    Chen, Fuyao
    REMOTE SENSING, 2019, 11 (14):
  • [38] Research on land use/cover classification based on RS and GIS
    Zhang, Yikuan
    Lu, Ke
    He, Ning
    Zhang, Peng
    PMA 2006: SECOND INTERNATIONAL SYMPOSIUM ON PLANT GROWTH MODELING, SIMULATION, VISUALIZATION AND APPLICATIONS, PROCEEDINGS, 2007, : 244 - +
  • [39] Knowledge based stacking of hyperspectral data for land cover classification
    Chen, Yangchi
    Crawford, Melba M.
    Ghosh, Joydeep
    2007 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING, VOLS 1 AND 2, 2007, : 316 - 322
  • [40] Urban land-cover classification: An object based perspective
    Darwish, A
    Leukert, K
    Reinhardt, W
    2ND GRSS/ISPRS JOINT WORKSHOP ON REMOTE SENSING AND DATA FUSION OVER URBAN AREAS, 2003, : 278 - 282