Real-Time Human Body Motion Capturing System

被引:0
|
作者
Chung-Lin Huang [1 ]
Chien-Wei Hsu [2 ]
Zhi-Ren Tsai [3 ]
机构
[1] Department of M-Commerce and Multimedia Applications, Asia University
[2] Media Tek Inc.  3. Department of Computer Science and Information Engineering, Asia University
关键词
Motion capturing; random forest classifier; regression forest;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
This paper proposes a human body motion capturing system using the depth images. It consists of three processes to estimate the human pose parameters. First, we develop a pixel-based body part classifier to segment the human silhouette into different body part sub-regions and extract the primary joints.Second, we convert the distribution of the joints to the feature vector and apply the regression forest to estimate human pose parameters. Third, we apply the temporal constraints mechanism to find the best human pose parameter with the minimum estimation error. In experiments, we show that our system can operate in real-time with sufficient accuracy.
引用
收藏
页码:115 / 122
页数:8
相关论文
共 50 条
  • [1] Real-time human motion capturing system
    Shen, BC
    Shih, HC
    Huang, CL
    [J]. 2005 International Conference on Image Processing (ICIP), Vols 1-5, 2005, : 2449 - 2452
  • [2] A real-time vision-based human motion capturing
    Huang, CL
    Shen, BC
    Shih, HC
    [J]. Visual Communications and Image Processing 2005, Pts 1-4, 2005, 5960 : 917 - 928
  • [3] Real-time Human Body Correspondences for Motion Tracking
    He, Chong
    Xiao, Shuangjiu
    [J]. PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON IMAGE AND GRAPHICS PROCESSING (ICIGP 2018), 2018, : 26 - 30
  • [4] Real-time mimicking of human body motion by a humanoid robot
    Cheng, G
    Kuniyoshi, Y
    [J]. INTELLIGENT AUTONOMOUS SYSTEMS 6, 2000, : 273 - 280
  • [5] Computational Foresight: Forecasting Human Body Motion in Real-time for Reducing Delays in Interactive System
    Horiuchi, Yuuki
    Shinoda, Hiroyuki
    Makino, Yasutoshi
    [J]. PROCEEDINGS OF THE 2017 ACM INTERNATIONAL CONFERENCE ON INTERACTIVE SURFACES AND SPACES (ACM ISS 2017), 2017, : 312 - 317
  • [6] ON REAL-TIME WHOLE-BODY HUMAN TO HUMANOID MOTION TRANSFER
    Montecillo-Puente, Francisco-Javier
    Sreenivasa, Manish N.
    Laumond, Jean-Paul
    [J]. ICINCO 2010: PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL 2, 2010, : 22 - 31
  • [7] Real-time motion capture ford a human body using accelerometers
    Lee, J
    Ha, I
    [J]. ROBOTICA, 2001, 19 : 601 - 610
  • [8] Real-time recognition of body motion for virtual dance collaboration system
    Graduate School of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
    不详
    不详
    [J]. Kyokai Joho Imeji Zasshi, 2008, 6 (909-913):
  • [9] Real-time recognition of body motion for virtual dance collaboration system
    Tsuruta, Seiya
    Kawauchi, Yamato
    Choi, Woong
    Hachimura, Kozaburo
    [J]. 17TH INTERNATIONAL CONFERENCE ON ARTIFICIAL REALITY AND TELEXISTENCE, ICAT 2007, PROCEEDINGS, 2007, : 23 - 30
  • [10] Real-Time Monitoring Human Motion System for Ergonomic Posture
    Otto, Thiago Beckert
    Campos, Alexandre
    de Souza, Marcos Aurelio
    [J]. ADVANCES IN AUTOMATION AND ROBOTICS RESEARCH IN LATIN AMERICA, 2017, 13 : 223 - 234