General solutions for special orthotropic piezoelectric media

被引:1
|
作者
李相勇
王敏中
机构
[1] Department of Mechanics and Engineering Science Peking University Beijing 100871 China
[2] Department of Mechanics and Engineering Science Peking University Beijing 100871 China
基金
中国国家自然科学基金;
关键词
Special orthotropic piezoelectric media; LHN solution; E-L solution;
D O I
暂无
中图分类号
TU317 [结构试验与检验];
学科分类号
摘要
This paper presents the forms of the general solution for general anisotropic piezoelectric media starting from the basic equations of piezoelasticity by using the operator method introduced by Lur’e (1964), and gives the analytical form of the general solution for special orthotropic piezoelectric media. This paper uses the non-uniqueness of the general solution to obtain the generalized LHN solution and the generalized E-L solution for special orthotropic piezoelectric media. When the special orthotropic piezoelectric media degenerate to transversely piezoelectric media, the solution given by this paper degenerates to the solution for transversely isotropic piezoelectric media accordingly, so that this paper generalized the results in transversely isotropic piezoelectric media.
引用
收藏
页码:335 / 339
页数:5
相关论文
共 50 条
  • [41] A general solution for the Displacements of piezoelectric media which are subjected to constant electric fields
    Hestenes, Arnold D.
    Osterberg, Harold
    PHYSICS-A JOURNAL OF GENERAL AND APPLIED PHYSICS, 1935, 6 (01): : 291 - 293
  • [42] A boundary integral formulation and 2D fundamental solutions for piezoelectric media
    Ding, HJ
    Wang, GQ
    Chen, WQ
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 158 (1-2) : 65 - 80
  • [43] SOLUTIONS OF MAXWELLS EQUATIONS FOR GENERAL NONPERIODIC WAVES IN LOSSY MEDIA
    ELSHANDWILY, ME
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 1988, 30 (04) : 577 - 582
  • [44] Microstructural evolution in orthotropic elastic media
    Leo, PH
    Lowengrub, JS
    Nie, Q
    JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 157 (01) : 44 - 88
  • [45] Impact response of a finite crack in an orthotropic piezoelectric ceramic
    Shindo, Y
    Narita, F
    Ozawa, E
    ACTA MECHANICA, 1999, 137 (1-2) : 99 - 107
  • [46] Stress State of an Orthotropic Piezoelectric Material with an Elliptic Crack
    Kirilyuk V.S.
    Levchuk O.I.
    International Applied Mechanics, 2017, 53 (3) : 305 - 312
  • [47] Impact response of a finite crack in an orthotropic piezoelectric ceramic
    Y. Shindo
    F. Narita
    E. Ozawa
    Acta Mechanica, 1999, 137 : 99 - 107
  • [48] Impact response of a finite crack in an orthotropic piezoelectric ceramic
    Shindo, Y.
    Narita, F.
    Ozawa, E.
    Acta Mechanica, 1999, 137 (01): : 99 - 107
  • [49] Investigation of Crack Repair in Orthotropic Composite by Piezoelectric Patching
    Kumar, Ritesh
    Singh, Akhilendra
    Tiwari, Mayank
    MATERIALS TODAY-PROCEEDINGS, 2020, 21 : 1303 - 1312
  • [50] Identification of conductivity in inhomogeneous orthotropic media
    Mahmood, Mohammed Shuker
    Lesnic, D.
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2019, 29 (01) : 165 - 183