ON ESTIMATIONS OF TRIGONOMETRIC SUMS OVER PRIMES IN SHORT INTERVALS(Ⅱ)

被引:5
|
作者
潘承洞
潘承彪
机构
[1] Peking University
[2] Shangdong University
[3] Jinan
基金
中国国家自然科学基金;
关键词
number theory; exponential sums; additive number theory; circle method; Goldbach-type problem;
D O I
暂无
中图分类号
学科分类号
摘要
Let α be a real number,x≥A≥2, e(θ) = e, Λ(n) be Mangoldt’s function, and S(α; x, A) = sum from x-A<n≤x (Λ(n)e(nα).In this paper, the two following results are proved by a purely analytic method. (i) Let ε bean arbitrarily small positive number and x≤A≤x. Then for any given positive c,there exist positive cand csuch that S(α/q +λ; x,A)?A(logx), provided that (α,q) = 1,1≤q≤logx, and Alogx<| λ |≤(qlogx); (ii) Let N be a sufficiently large odd integer, andU = N. Then the Diophantine equation with prime variables N = p+ p+ pis solv-able for N/3 - U<p≤N/3 + U, j= 1, 2, 3, and there is an asymptotic formula for thenumber of its solutions.
引用
收藏
页码:641 / 653
页数:13
相关论文
共 50 条