A CLASS OF VARIATIONAL DIFFERENCE SCHEMES FOR A SINGULAR PERTURBATION PROBLEM

被引:0
|
作者
林平
机构
[1] Nanjing
[2] Nanjing University
关键词
A CLASS OF VARIATIONAL DIFFERENCE SCHEMES FOR A SINGULAR PERTURBATION PROBLEM;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper,a singularly perturbed boundary value problem for second order self-adjoint ordinary differential equation is discussed.A class of variational difference schemesis constructed by the finite element method.Uniform convergence about small parameter isproved under a weaker smooth condition with respect to the coefficients of the equation.The schemes studied in refs.[1],[3],[4]and[5]belong to the class.
引用
收藏
页码:353 / 359
页数:7
相关论文
共 50 条
  • [31] A Singular Singular Perturbation Problem Arising From a Class of Biomolecular Feedback Controllers
    Qian, Yili
    Del Vecchio, Domitilla
    IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (02): : 236 - 241
  • [32] HIGHER-ORDER MONOTONE SCHEMES FOR A NONLINEAR SINGULAR PERTURBATION PROBLEM
    VULANOVIC, R
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1988, 68 (05): : T428 - T430
  • [33] On the dynamics of a class of difference equations with continuous arguments and its singular perturbation
    EL-Sayed, A. M. A.
    Salman, S. M.
    Abo-Bakr, A. M. A.
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 66 : 739 - 749
  • [34] Absolutely stable difference scheme for a general class of singular perturbation problems
    El-Zahar, Essam R.
    Alotaibi, A. M.
    Ebaid, Abdelhalim
    Baleanu, Dumitru
    Machado, Jose Tenreiro
    Hamed, Y. S.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [35] Absolutely stable difference scheme for a general class of singular perturbation problems
    Essam R. El-Zahar
    A. M. Alotaibi
    Abdelhalim Ebaid
    Dumitru Baleanu
    José Tenreiro Machado
    Y. S. Hamed
    Advances in Difference Equations, 2020
  • [36] A SINGULAR PERTURBATION PROBLEM
    CHOW, YS
    GRENANDER, U
    JOURNAL OF INTEGRAL EQUATIONS, 1985, 9 (01): : 63 - 73
  • [37] Fourth-order accurate difference method for the singular perturbation problem
    Chuanhan L.
    Applied Mathematics and Mechanics, 1997, 18 (10) : 987 - 995
  • [38] A second-order difference scheme for a parameterized singular perturbation problem
    Cen, Zhongdi
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 221 (01) : 174 - 182
  • [39] AN OPTIMAL UNIFORMLY CONVERGENT OCI DIFFERENCE SCHEME FOR A SINGULAR PERTURBATION PROBLEM
    SURLA, K
    UZELAC, Z
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1990, 36 (3-4) : 239 - 250