The Existence of a Class of Balanced Multi-output Rotation Symmetric Boolean Functions

被引:0
|
作者
DU Jiao [1 ,2 ]
FU Shaojing [3 ]
QU Longjiang [4 ]
LI Chao [4 ]
PANG Shanqi [1 ,2 ]
机构
[1] College of Mathematics and Information Science,Henan Normal University
[2] Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control,Henan Normal University
[3] College of Computer Science,National University of Defense Technology
[4] College of Liberal Arts and Science,National University of Defense Technology
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Cryptography; Rotation symmetric; Orbit matrix; Correlation immune; Resilient functions;
D O I
暂无
中图分类号
TN918.1 [理论];
学科分类号
070104 ;
摘要
A new characterization of balanced rotation symmetric(n, m)-functions is presented. Based on the characterization, the nonexistence of balanced rotation symmetric(p;, m)-functions is determined, where p is an odd prime and m ≥ 2. And there exist balanced rotation symmetric(2;, m)-functions for 2 ≤ m ≤ 2;-r. With the help of these results, we also prove that there exist rotation symmetric resilient(2;, m)-functions for 2 ≤ m ≤ 2;-r-1.
引用
收藏
页码:995 / 1001
页数:7
相关论文
共 50 条
  • [21] Quantum algorithms for learning Walsh spectra of multi-output Boolean functions
    Cui, Jingyi
    Guo, Jiansheng
    Xu, Linhong
    Li, Mingming
    QUANTUM INFORMATION PROCESSING, 2019, 18 (06)
  • [22] New characterizations for the multi-output correlation-immune Boolean functions
    Chai, Jinjin
    Mesnager, Sihem
    Wang, Zilong
    DISCRETE MATHEMATICS, 2020, 343 (11)
  • [23] On the Balanced Elementary Symmetric Boolean Functions
    Qu, Longjiang
    Dai, Qingping
    Li, Chao
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2013, E96A (02) : 663 - 665
  • [24] On non-existence of bent-negabent rotation symmetric Boolean functions
    Mandal, Bimal
    Singh, Bhupendra
    Gangopadhyay, Sugata
    Maitra, Subhamoy
    Vetrivel, V.
    DISCRETE APPLIED MATHEMATICS, 2018, 236 : 1 - 6
  • [25] On the number of rotation symmetric Boolean functions
    ShaoJing Fu
    Chao Li
    LongJiang Qu
    Science China Information Sciences, 2010, 53 : 537 - 545
  • [26] On the matrix of rotation symmetric Boolean functions
    Ciungu, Lavinia C.
    Iovanov, Miodrag C.
    DISCRETE MATHEMATICS, 2018, 341 (12) : 3271 - 3280
  • [27] On the number of rotation symmetric Boolean functions
    FU ShaoJing1
    2State Key Laboratory of Information Security
    3National Mobile Communications Research Laboratory
    ScienceChina(InformationSciences), 2010, 53 (03) : 537 - 545
  • [28] On the number of rotation symmetric Boolean functions
    Fu ShaoJing
    Li Chao
    Qu LongJiang
    SCIENCE CHINA-INFORMATION SCIENCES, 2010, 53 (03) : 537 - 545
  • [29] Quadratic rotation symmetric Boolean functions
    Chirvasitu, Alexandru
    Cusick, Thomas W.
    DISCRETE APPLIED MATHEMATICS, 2024, 343 : 91 - 105
  • [30] Relationship between Multi-Output Partially Bent Functions and Multi-Output Bent Functions
    ZHAO Yaqun~ 1
    2. State Key Laboratory of Information Security
    WuhanUniversityJournalofNaturalSciences, 2006, (06) : 1887 - 1890